A total of 20 patients with a depressed fracture
of the lateral tibial plateau (Schatzker II or III) who would undergo open
reduction and internal fixation were randomised to have the metaphyseal
void in the bone filled with either porous titanium granules or
autograft bone. Radiographs were undertaken within one week, after
six weeks, three months, six months, and after 12 months. The primary outcome measure was recurrent depression of the joint
surface: a secondary outcome was the duration of surgery. The risk of recurrent depression of the joint surface was lower
(p <
0.001) and the operating time less (p <
0.002) when titanium
granules were used. The indication is that it is therefore beneficial to use porous
titanium granules than
The results of a study of the use of autograft versus allograft bone in the surgery of idiopathic adolescent scoliosis are presented. Two groups of patients, matched for age, sex, level and angle of curve, received bone grafts, 20 patients having autogenous bone from the iliac crest and the other 20 having donor bone from a bone bank. Both groups had otherwise identical posterior fusions and Harrington instrumentation. There was no difference between the two groups in a blind, radiographic assessment of bone graft mass at six months, nor in maintenance of the curve correction over the same period. No major operative complications nor failures of instrumentation were encountered. There was, however, a marked reduction in operative time and blood loss in the patients receiving donor bone and also a much lower incidence of late symptoms relating to the operative sites. We conclude that, even in the presence of adequate iliac crest, the use of bank bone is superior for grafting in idiopathic scoliosis surgery.
Total hip replacement (THR) after acetabular
fracture presents unique challenges to the orthopaedic surgeon.
The majority of patients can be treated with a standard THR, resulting
in a very reasonable outcome. Technical challenges however include
infection, residual pelvic deformity, acetabular bone loss with
ununited fractures, osteonecrosis of bone fragments, retained metalwork,
heterotopic ossification, dealing with the sciatic nerve, and the
difficulties of obtaining long-term acetabular component fixation.
Indications for an acute THR include young patients with both femoral
head and acetabular involvement with severe comminution that cannot
be reconstructed, and the elderly, with severe bony comminution.
The outcomes of THR for established post-traumatic arthritis include
excellent pain relief and functional improvements. The use of modern
implants and alternative bearing surfaces should improve outcomes
further. Cite this article:
Reverse total shoulder arthroplasty (RSA) with glenoid bone grafting has become a common option for the management of significant glenoid bone loss and deformity associated with glenohumeral osteoarthritis. Despite the increasing utilization of this technique, our understanding of the rates of bone graft union, complications and outcomes are limited. The objectives of this systematic review are to determine 1) the overall rate of bone graft union, 2) the rate of union stratified by graft type and technique, 3) the reoperation and complication rates, and 4) functional outcomes, including range of motion (ROM) and functional outcome scores following RSA with glenoid bone grafting. A comprehensive search of MEDLINE, Embase, and CINAHL databases was completed for studies reporting outcomes following RSA with glenoid bone grafting. Inclusion criteria included clinical studies with greater than 10 patients, and minimum follow up of one year. Studies were screened independently by two reviewers and quality assessment was performed using the MINORs criteria. Pooled and frequency-weighted means and standard deviations were calculated where applicable. Overall, 15 studies were included, including nine retrospective case series (level IV), four retrospective cohort studies (level III), one prospective cohort study (level II) and one randomized control trial (level I). The entire cohort consisted of 555 patients with a mean age of 71.9±2.1 years and 70 percent female. The mean follow-up was 33.8±9.4 months. Across all procedures, 84.9% (N=471) were primary arthroplasties, and 15.1% (N=84) were revisions. The overall graft union rate was 89.2%, but was higher at 96.1% among studies that used
Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite
Aim. infected segmental bone defect (ISBD) is frequent in developing countries. The aim of this study was to assess the efficacy of the Masquelet technique in the treatment of ISBD in a low-resource setting. Patients and Method. We performed a prospective cohort study during the period from 2018 to 2022. Patients with infected bone defect of long bones were included. Management protocol consisted of two stages in all patients. The first stage consisted in debridement, tissues biopsy for microbiological culture, stabilization with external fixator and defect filling with gentamicin cement spacer. The second stage consisted of reconstruction using a cancellous
Lumbar fusion surgery is an established procedure for the treatment of several spinal pathologies. Despite numerous techniques and existing devices, common surgical trends in lumbar fusion surgery are scarcely investigated. The purpose of this Canada-based study was to provide a descriptive portrait of current surgeons’ practice and implant preferences in lumbar fusion surgery while comparing findings to similar investigations performed in the United Kingdom. Canadian Spine Society (CSS) members were sampled using an online questionnaire which was based on previous investigations performed in the United Kingdom. Fifteen questions addressed the various aspects of surgeons’ practice: fusion techniques, implant preferences, and bone grafting procedures. Responses were analyzed by means of descriptive statistics. Of 139 eligible CSS members, 41 spinal surgeons completed the survey (29.5%). The most common fusion approach was via transforaminal lumber interbody fusion (TLIF) with 87.8% performing at least one procedure in the previous year. In keeping with this, 24 surgeons (58.5%) had performed 11 to 50 cases in that time frame. Eighty-six percent had performed no lumbar artificial disc replacements over their last year of practice. There was clear consistency on the relevance of a patient specific management (73.2%) on the preferred fusion approach. The most preferred method was pedicle screw fixation (78%). The use of stand-alone cages was not supported by any respondents. With regards to the cage material, titanium cages were the most used (41.5%). Published clinical outcome data was the most important variable in dictating implant choice (87.8%). Cage thickness was considered the most important aspect of cage geometry and hyperlordotic cages were preferred at the lower lumbar levels.
Previous clinical studies have shown the efficacy of a foreign body-induced membrane combined with
Spinal fusion is one of the most common surgical procedures in spine surgery, whose primary objective is the stabilization of the spine for the treatment of many degenerative, traumatic and oncological diseases of the spine. Autologous bone is still considered the “gold standard” technique for spinal fusion. However, biomaterials which are potentially osteogenic, osteoinductive and osteoconductive can be used to increase the process of spinal fusion. We evaluated two new bone substitutes as an alternative to autologous bone for spinal fusion, using an animal model of large size (adult sheep). A preclinical study was designed to compare the efficacy of SINTlife® Putty and DBSINT® biomaterials with conventional
Introduction. Purpose: Injuries to the long bones of the upper limb resulting in bone defects are rare but potentially devastating. Literature on the management of these injuries is limited to case reports and small case series. The aim of this study was to collate the most recent published work on the management of upper limb bone defects to assist with evidence based management when confronted with these cases. Materials and Methods. Methods: Following a preliminary search that confirmed the paucity of literature and lack of comparative trials, a scoping review using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR) was conducted. A literature search of major electronic databases was conducted to identify journal articles relating to the management of upper limb long bone defects published between 2010 and 2020. Results. Results: A total of 46 publications reporting on the management of 341 patients were reviewed. Structural
Background. Synthetic interbody spinal fusion devices are used to restore and maintain disc height and ensure proper vertebral alignment. These devices are often filled with
Joint surface restoration of deep osteochondral defects represents a significant unmet clinical need. Moreover, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair deep osteochondral defects such as osteochondral grafting or sandwich strategies combining
Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and
Autologous bone has been the gold standard for grafting material in foot and ankle arthrodesis. While autograft use has been effective, the harvest procedure does present risks to the patient including readmission, infection, and persistent graft harvest site pain. Previous studies have examined graft harvest site pain, but most have focused on the iliac crest and none have long term follow-up. The purpose of this study was to examine long-term (7–10 year) harvest site pain in subjects undergoing autograft harvest from multiple sites for hindfoot and/or ankle arthrodesis. Sixty (60) subjects underwent hindfoot or ankle arthrodesis supplemented with autograft as part of the control arm of a prospective, randomized trial. The mean subject age was 59.4 years (range, 24.7–76.8) and mean body mass index was 30.6 kg/m2 (range, 22.0–44.0). There were 29 males and 31 female subjects. Subjects had the tibiotalar (37.9%), subtalar (24.1%), talonavicular (10.3%), subtalar/talonavicular (5.1%), or subtalar/calcaneocuboid/talonavicular (22.4%) joints arthrodesed. Autograft was harvested from either the proximal tibia (51.7%), iliac crest (17.2%), calcaneous (15.5%), distal tibia (6.8%), or other location (8.6%). Graft harvest site pain was evaluated using a 100-point visual analog score (VAS), with clinically significant pain being any score greater than 20. Subjects were followed a mean of 9.0 years (range, 7.8–10.5). The percentage of subjects who reported clinically significant pain was 35.7%, 21.4%, 18.2%, 10.5%, 8.9%, and 5.2% at 2, 6, 12, 24, 52 weeks, and final follow-up (7.8–10.5 years), respectively. The mean VAS autograft harvest site pain at final follow-up was 4.4 (range, 0.0–97.0), with 37.9% of subjects reporting at least some pain. For three subjects (5%) with clinically significant pain (VAS >20) at final follow-up, two had proximal tibial harvest sites and one had an iliac crest harvest site. There was no correlation between graft volume and harvest site pain. This study is the first to examine long-term pain following autologous bone graft harvest for hindfoot and/or ankle arthrodesis. Over a third of patients reported having some pain at an average follow-up of nine years, with 5% experiencing clinically significant pain. The results of this study suggest that harvesting
Aims: Clinical use of BMP-7: actual situation The tibial pseudoarthrosis. The Friedlander paper can be considered the only golden standard about the clinical application. It is a prospective, randomized clinical trial comparing BMP-7 with fresh
In developmental dysplasia of the hip (DDH),
a bone defect is often observed superior to the acetabulum after
the reconstruction at the level of the true acetabulum during total
hip replacement (THR). However, the essential amount of uncemented
acetabular component coverage required for a satisfactory outcome
remains controversial. The purpose of this study was to assess the
stability and function of acetabular components with a lack of coverage >
30% (31% to 50%). A total of 760 DDH patients underwent THR with
acetabular reconstruction at the level of the true floor. Lack of
coverage above the acetabular component of >
30% occurred in 56
patients. Intra-operatively, autogenous morcellised bone grafts
were used to fill the uncovered portion. Other than two screws inserted through
the acetabular shell, no additional structural supports were used
in these hips. In all, four patients were lost to follow-up. Therefore,
52 patients (52 hips, 41 women and 11 men) with a mean age of 60.1
years (42 to 78) were available for this study at a mean of 4.8
years (3 to 7). There were no instances of prosthesis revision or
marked loosening during the follow-up. The Harris hip score improved
from a mean of 40.7 points (. sd. 12.2) pre-operatively to
91.1 (. sd. 5.0) at the last follow-up. Radiological analysis
with medical imaging software allowed us to calculate the extent
of the uncoverage in terms of the uncovered arc of the implant as
viewed on the anteroposterior pelvic radiograph. From this we propose
that up to 17 mm of lateral undercoverage in the presence of a stable
initial implantation in the presence of
In the treatment of bone non-unions an alternative to
Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. Conclusion. This novel hydrogel is biocompatible, facilitates migration of cells, promotes increased bone formation and integrates with surrounding bone. This system could be injected to fill spaces within and surrounding spinal cages to aid in cage fixation and spinal fusion without the need for harvesting of
This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data.Aims
Methods
Introduction. Augmentation of spinal fusion using bone grafts is largely mediated by the osteoinductive potential of mesenchymal stem cells (MSC) that reside in cancellous bone. Iliac crest (IC) is a common autograft, but its use presents an increased risk for donor-site pain, morbidity and infection. Degenerative facet joints (FJ) harvested during facetectomy might servce as alternative local grafts. In this study, we conducted an intra-individual comparison of the osteogenic potential of MSC from both sources. Methods. IC and degenerative FJ were harvested from 8 consecutive patients undergoing transforaminal lumbar interbody fusion surgery for spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers. Results. Average colony-forming efficiency in osteogenic medium was equal between IC (38±12%) and FJ (36±11%). Osteogenic potential at the clonal level was 55±26 and 68±17% for IC and FJ MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in IC (6-fold) and FJ (8-fold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in IC MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from IC. Adipocyte numbers showed significant differences between IC (63±60) and FJ (18±15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources. Conclusion. MSC from IC and degenerative FJ largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of FJ MSC. Facetectomy samples are viable