Advertisement for orthosearch.org.uk
Results 1 - 20 of 919
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 27 - 27
1 Nov 2022
Khan S Kapoor L Kumar V
Full Access

Abstract. Background. Conventional periacetabular pelvic resections are associated with poor functional outcomes. Resections through surgical corridors beyond the conventional margins may be helpful in retaining greater function without compromising the oncological margins. Methods. The study included a retrospective review of 82 cases of pelvic resections for pelvic tumors. Outcomes of acetabulum preservation (Group A) were compared with complete acetabular resection (Group B). Also, we compared outcomes of Type I+half resections (Group 1) with Type I+II resections (Group 2), and Type III+half resections (Group 3) with Type II+III resections (Group 4). Results. Group A (n=44) had significantly better functional outcome than Group B(n=38) with average MSTS93 score 22.3 vs 20.1 and average HHS 91.3 vs 82.5 (p<0.001). Group 1(n=14) and Group 2(n=12) had similar functional outcomes (mean MSTS93 score 22.07 vs 21.58 (p=0.597) and mean HHS 90.37 vs 86.51 (p=0.205)). Group 3(n=11) had significantly better functional outcome than Group 4(n=17), with mean MSTS93 score 22.8 vs 19.7 (p<0.001) and mean HHS 92.3 vs 80.1 (p<0.001). Oncological outcomes were similar among the groups. Conclusion. Trans-acetabular pelvic resections provide functional benefit over conventional resections without compromising oncological margins. There is a need to revisit and revise the pelvic resection planes


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 31 - 31
1 Dec 2022
Sheridan G Clesham K Greidanus NV Masri B Garbuz D Duncan CP Howard L
Full Access

To date, the literature has not yet revealed superiority of Minimally Invasive (MI) approaches over conventional techniques. We performed a systematic review to determine whether minimally invasive approaches are superior to conventional approaches in total hip arthroplasty for (1) clinical and (2) functional outcomes. We performed a meta-analysis of level 1 evidence to determine whether (3) minimally invasive approaches are superior to conventional approaches for clinical outcomes. All studies comparing MI approaches to conventional approaches were eligible for analysis. The PRISMA guidelines were adhered to throughout this study. Registries were searched using the following MeSH terms: ‘minimally invasive’, ‘muscle-sparing’, ‘THA’, ‘THR’, ‘hip arthroplasty’ and ‘hip replacement’. Locations searched included PubMed, the Cochrane Library, ClinicalTrials.gov, the EU clinical trials register and the International Clinical Trials Registry Platform (World Health Organisation). Twenty studies were identified. There were 1,282 MI THAs and 1,351 conventional THAs performed. (1). There was no difference between MI and conventional approaches for all clinical outcomes of relevance including all-cause revision (p=0.959), aseptic revision (p=0.894), instability (p=0.894), infection (p=0.669) and periprosthetic fracture (p=0.940). (2). There was also no difference in functional outcome at early or intermediate follow-up between the two groups (p=0.38). (3). In level I studies exclusively, random-effects meta-analysis demonstrated no difference in the rate of aseptic revision (p=0.461) between both groups. Intermuscular MI approaches are equivalent to conventional THA approaches when considering all-cause revision, aseptic revision, infection, dislocation, fracture rates and functional outcomes. Meta-analysis of level 1 evidence supports this claim


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 6 - 6
10 May 2024
Zaidi F Bolam S Goplen C Yeung T Lovatt M Hanlon M Munro J Besier T Monk A
Full Access

Introduction. Robotic-assisted total knee arthroplasty (TKA) has demonstrated significant benefits, including improved accuracy of component positioning compared to conventional jig-based TKA. However, previous studies have often failed to associate these findings with clinically significant improvements in patient-reported outcome measures (PROMs). Inertial measurement units (IMUs) provide a more nuanced assessment of a patient's functional recovery after TKA. This study aims to compare outcomes of patients undergoing robotic-assisted and conventional TKA in the early postoperative period using conventional PROMS and wearable sensors. Method. 100 patients with symptomatic end-stage knee osteoarthritis undergoing primary TKA were included in this study (44 robotic-assisted TKA and 56 conventional TKA). Functional outcomes were assessed using ankle-worn IMUs and PROMs. IMU- based outcomes included impact load, impact asymmetry, maximum knee flexion angle, and bone stimulus. PROMs, including Oxford Knee Score (OKS), EuroQol-Five Dimension (EQ-5D-5L), EuroQol Visual Analogue Scale (EQ-VAS), and Forgotten Joint Score (FJS-12) were evaluated at preoperative baseline, weeks 2 to 6 postoperatively, and at 3-month postoperative follow-up. Results. By postoperative week 6, when compared to conventional TKA, robotic-assisted TKA was associated with significant improvements in maximum knee flexion angle (118o ± 6.6 vs. 113o ± 5.4; p=0.04), symmetrical loading of limbs (82.3% vs.22.4%; p<0.01), cumulative impact load (146.6% vs 37%; p<0.01), and bone stimulus (25.1% vs 13.6%; p<0.01). Whilst there were no significant differences in PROMs (OKS, EQ-5D-5L, EQ-VAS, and FJS-12) at any time point between the two groups, when comparing OKS subscales, significantly more robotic-assisted TKA patients achieved an ‘excellent’ outcome at 6 weeks compared to conventional (47% vs 41%, p= 0.013). Conclusions. IMU-based metrics detected an earlier return to function among patients that underwent robotic-assisted TKA compared to conventional TKA that PROMs were unable to detect within the first six weeks of surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 82 - 82
23 Feb 2023
Rossignol SL Boekel P Rikard-Bell M Grant A Brandon B Doma K O'Callaghan W Wilkinson M Morse L
Full Access

Glenoid baseplate positioning for reverse total shoulder replacements (rTSR) is key for stability and longevity. 3D planning and image-derived instrumentation (IDI) are techniques for improving implant placement accuracy. This is a single-blinded randomised controlled trial comparing 3D planning with IDI jigs versus 3D planning with conventional instrumentation. Eligible patients were enrolled and had 3D pre-operative planning. They were randomised to either IDI or conventional instrumentation; then underwent their rTSR. 6 weeks post operatively, a CT scan was performed and blinded assessors measured the accuracy of glenoid baseplate position relative to the pre-operative plan. 47 patients were included: 24 with IDI and 23 with conventional instrumentation. The IDI group were more likely to have a guidewire placement within 2mm of the preoperative plan in the superior/inferior plane when compared to the conventional group (p=0.01). The IDI group had a smaller degree of error when the native glenoid retroversion was >10° (p=0.047) when compared to the conventional group. All other parameters (inclination, anterior/posterior plane, glenoids with retroversion <10°) showed no significant difference between the two groups. Both IDI and conventional methods for rTSA placement are very accurate. However, IDI is more accurate for complex glenoid morphology and placement in the superior-inferior plane. Clinically, these two parameters are important and may prevent long term complications of scapular notching or glenoid baseplate loosening. Image-derived instrumentation (IDI) is significantly more accurate in glenoid component placement in the superior/inferior plane compared to conventional instrumentation when using 3D pre-operative planning. Additionally, in complex glenoid morphologies where the native retroversion is >10°, IDI has improved accuracy in glenoid placement compared to conventional instrumentation. IDI is an accurate method for glenoid guidewire and component placement in rTSA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 23 - 23
1 Nov 2022
Jha A Jayaram J Carter J Siney P James J Hemmady M
Full Access

Abstract. Cemented total hip arthroplasty (THA) in the younger patient has historically been associated with higher wear and revision rates. We carried out a retrospective study of a prospectively collected database of patients at Wrightington hospital undergoing cemented THA under 55 years of age to determine acetabular wear and revision rates. Between August 2005 and December 2021 a cohort of 110 patients, 56 males and 54 females, underwent Cemented Total Hip Replacement through a posterior approach. Mean age at operation was 50yrs (35–55). The mean follow up was 6 years 9 months (0–16 years). 3 patients were lost to follow-up. Of the remaining 107 patients, Conventional and cross lined polyethylene were used in 54 and 53 patients respectively. Ceramic heads were used in 102 patients. 22.225mm and 28mm heads were used in 60 and 47 patients respectively. Clinical outcomes were assessed by Merle d'Aubigne and Postel scores which showed significant functional improvement. Linear wear was measured on plain radiographs using TRAUMA CAD and cup loosening was assessed by classification of Hodgkinson et al. No cases were revised during the observed follow up period. The mean wear rate in conventional and crosslinked polyethylene cups were 2.31mm (0.1–4.6) and 1.02mm (0.1–2.6) respectively. Cemented THA with both conventional and crosslinked polyethylene provides excellent survival rates in adults under the age of 55 years and crosslinked polyethylene may further improve these results due to improved wear rates


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 68 - 68
10 Feb 2023
Zaidi F Bolam S Yeung T Besier T Hanlon M Munro J Monk A
Full Access

Patient-reported outcome measures (PROMs) have failed to highlight differences in function or outcome when comparing knee replacement designs and implantation techniques. Ankle-worn inertial measurement units (IMUs) can be used to remotely measure and monitor the bi-lateral impact load of patients, augmenting traditional PROMs with objective data. The aim of this study was to compare IMU-based impact loads with PROMs in patients who had undergone conventional total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and robotic-assisted TKA (RA-TKA). 77 patients undergoing primary knee arthroplasty (29 RA-TKA, 37 TKA, and 11 UKA) for osteoarthritis were prospectively enrolled. Remote patient monitoring was performed pre-operatively, then weekly from post-operative weeks two to six using ankle-worn IMUs and PROMs. IMU-based outcomes included: cumulative impact load, bone stimulus, and impact load asymmetry. PROMs scores included: Oxford Knee Score (OKS), EuroQol Five-dimension with EuroQol visual analogue scale, and the Forgotten Joint Score. On average, patients showed improved impact load asymmetry by 67% (p=0.001), bone stimulus by 41% (p<0.001), and cumulative impact load by 121% (p=0.035) between post-operative week two and six. Differences in IMU-based outcomes were observed in the initial six weeks post-operatively between surgical procedures. The mean change scores for OKS were 7.5 (RA-TKA), 11.4 (TKA), and 11.2 (UKA) over the early post-operative period (p=0.144). Improvements in OKS were consistent with IMU outcomes in the RA-TKA group, however, conventional TKA and UKA groups did not reflect the same trend in improvement as OKS, demonstrating a functional decline. Our data illustrate that PROMs do not necessarily align with patient function, with some patients reporting good PROMs, yet show a decline in cumulative impact load or load asymmetry. These data also provide evidence for a difference in the functional outcome of TKA and UKA patients that might be overlooked by using PROMs alone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 43 - 43
10 Feb 2023
Fary C Tripuraneni K Klar B Ren A Abshagen S Verheul R
Full Access

We sought to evaluate the early post-operative active range-of-motion (AROM) between robotic-assisted total knee arthroplasty (raTKA) and conventional TKA (cTKA). A secondary data analysis on a global prospective cohort study was performed. A propensity score method was used to select a matched control of cTKA from the same database using 1:1 ratio, based on age, sex, BMI, and comorbidity index. This resulted in 216 raTKA and cTKA matched cases. Multivariable longitudinal regression was used to evaluate difference in ROM over time and values are reported as least squares means (95% confidence interval). The longitudinal model tested the treatment effect (raTKA vs cTKA), time effect, and their interaction with control on covariance of patients ‘s age, sex, BMI, comorbidity and pre-operative flexion. Logistic regression was used to analyze the active flexion level at one month (cut by 90°) and three months (cut by 110°). At one-month postoperative the raTKA cases had more AROM for flexion by an average of 5.54 degrees (p<0.001). There was no difference at three months (p=0.228). The raTKA group had a greater improvement from pre-operative values at both one-month, with an average 7.07° (3.6°, 10.5°, p<0.001) more improvement, and at three-months with an average improvement of 4° more (1.61°, 7.24°, p=0.0115). AROM for extension was lower overall in the raTKA group by an average of 0.44° (p=0.029). The raTKA patients had higher odds of achieving ≥90° of flexion at one-month (OR 2.15, 95% CI 1.16, 3.99). raTKA resulted in greater AROM flexion gains in the early postoperative period than cTKA. Additional research is needed to understand if these earlier gains in AROM are associated with improved patient satisfaction and continued improvements with time


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 46 - 46
10 Feb 2023
Tuffley C Tuffley J Donnelly W Harris I Cuthbert A
Full Access

In this study we compare survivorship and patient reported outcome measures in robotically assisted versus conventional Total Hip Arthroplasty (THA). This paper investigates the hypothesis that implant survival and PROMS following THAs performed with robotic assistance were not different to outcomes following conventional THAs. Data included all patients undergoing THA for osteoarthritis between 19 April 2016 and 31 December 2020. Analysis of PROMS outcomes was restricted to those who had completed PROMS data preoperatively and at 6 months postoperatively. There were 157,647 procedures, including 3567 robotically assisted procedures, available for comparison of revision rates. 4557 procedures, including 130 robotically assisted procedures, had PROMS data available. The revision rate of primary THA performed with robotic assistance was not statistically different from THA performed by conventional methods (4 year cumulative percent revision 3.1% v 2.7%; HR = 1.05, p=0.67). The Oxford Hip Score, VAS for pain and the EQ-VAS score for overall health showed no statistically significant difference between the groups. The EQ-5D Utility Score showed an improved score (median score 1 v 0.88; OR = 1.58, p=0.007) for the robotically assisted group compared to the conventional group. Robotic assisted THA was not associated with significant improvement in early revision or joint-specific PROMs. The findings may have been biased, in either direction, by unmeasured patient, surgeon, hospital and prosthesis factors. The findings (including the difference in health-related quality of life) may have also been influenced by lack of blinding. Future research should include methods to minimise these biases


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 120 - 120
1 May 2016
Parker A Fitch D Nambu S Timmerman I
Full Access

Introduction. Total knee replacement (TKR) implant designs and materials have been shown to have a significant impact on tibial insert wear. A medial-pivot (MP) design theoretically should generate less wear due to a large contact area in the medial compartment and lower contact stresses. Synovial fluid aspiration studies have confirmed that a first generation MP TKR system (ADVANCE®, MicroPort Orthopedics Inc., Arlington, TN, USA) generates less wear debris than is seen with other implant designs articulating against conventional polyethylene (CP). Objectives. The objective of this study was to evaluate the in vitro wear rate of a second generation MP TKR system (EVOLUTION® Cruciate-Sacrificing, MicroPort Orthopedics Inc., Arlington, TN, USA) using CP tibial inserts and compare to previously published values for other TKR designs with CP and first or second generation crosslinked polyethylene (XLPE) tibial inserts. Methods. In vitro wear was assessed for five MP CP tibial inserts, each loaded for 5 megacycles (Mc) of simulated gait in accordance with ISO 14243–3. Insert cleaning and wear measurements were performed every 0.5 Mc in accordance with ISO 14243–2. Manufacturer websites and the MEDLINE database were searched for previously published in vitro wear rates for other TKR designs used in combination with CP and first or second generation XLPE inserts. Second generation XLPE inserts are those with additives or additional manufacturing, such as sequentially annealed and irradiated XLPE (X3®, Stryker, Mahwah, NJ, USA) and vitamin E infused polyethylene (E1®, Biomet, Warsaw, IN, USA). All TKR designs utilized cobalt-chrome (CoCr) femoral components, except Legion-Verilast that included Oxinium™ femoral components (Smith & Nephew, Memphis, TN, USA). Results. The mean wear rate for the MP system (2.0+0.2 mg/Mc) was less than half the wear rates reported for other TKR designs using CP inserts (Figure 1). The wear was also reduced or similar to those reported for all but three designs used in combination with XLPE inserts (Figure 2). Interestingly, wear rates for the MP system were approximately one-third of those reported for E1 and X3 used in combination with the Scorpio and Triathlon CR TKR systems (Stryker, Mahwah, NJ, USA). The main limitation to the current study is the use of literature comparators. While the comparison studies were all conducted using similar methods on knee wear simulator machines, there were some experimental differences that could potentially impact wear rates (e.g. diluted vs. non-diluted serum, gait patterns, types of testing machines). Conclusions. In vitro wear for a second generation MP TKR system was similar or lower than what has been previously reported for other TKR systems used with CP or XLPE tibial inserts. These results suggest that implant design may play a larger role in TKR wear debris generation than the material used for the tibial insert


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 47 - 47
1 Dec 2022
Sheridan G Clesham K Garbuz D Masri B
Full Access

The benefits of HXLPE in total knee arthroplasty (TKA) have not been as evident as total hip arthroplasty (THA). A systematic review and meta-analysis to assess the impact of highly-crosslinked polyethylene (HXLPE) on TKA outcomes compared to conventional polyethylene (CPE) is described. All studies comparing HXLPE with CPE for primary TKA were included for analysis. The minimum dataset included revision rates, indication for revision, aseptic component loosening and follow-up time. The primary outcome variables were all-cause revision, aseptic revision, revision for loosening, radiographic component loosening, osteolysis and incidence of radiolucent lines. Secondary outcome measures included postoperative functional knee scores. A random-effects meta-analysis allowing for all missing data was performed for all primary outcome variables. Six studies met the inclusion criteria. In total, there were 2,234 knees (1,105 HXLPE and 1,129 CPE). The combined mean follow-up for all studies was 6 years. The aseptic revision rate in the HXLPE group was 1.02% compared to 1.97% in the CPE group. There was no difference in the rate of all-cause revision (p = 0.131), aseptic revision (p = 0.298) or revision for component loosening (p = 0.206) between the two groups. Radiographic loosening (p = 0.200), radiolucent lines (p = 0.123) and osteolysis (p = 0.604) was similar between both groups. Functional outcomes were similar between groups. The use of HXLPE in TKA yields similar results for clinical and radiographic outcomes when compared to CPE at midterm follow-up. HXLPE does not confer the same advantages to TKA as seen in THA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 71 - 71
1 Apr 2018
Hood B Nelson J Lewis R Urquhart A Maratt J
Full Access

The purpose of this study is to assess the accuracy of component positioning and incidence of peri-operative and 90-day post-operative complications following robotic arm-assisted and conventional total hip arthroplasty (THA). Three groups of patients were analyzed for this study: those that underwent conventional THA performed by Surgeon 1, conventional THA performed by Surgeon 2, or robotic arm-assisted THA performed by Surgeon 2. All patients underwent primary uncemented THA via a posterior approach. Patient characteristics, intra-operative data, and 90-day post-operative complications were collected. Post-operative standing pelvic radiographs were utilized to measure acetabular position and to identify post-operative complications. Acetabular component position measurements revealed substantially less variation in both inclination and anteversion in the Surgeon 2 – Robotic group. Nine patients had intra-operative cables placed for intra-operative calcar fracture in the Surgeon 1 group compared to one patient and three patients in Surgeon 2 – Robotic and Surgeon 2 – Traditional groups, respectively. Nine instances of femoral stems subsidence were identified in the Surgeon 1 group compared to one patient in Surgeon 2 – Traditional. There were four instances of dislocation in the Surgeon 1 group compared to one in the Surgeon 2 – Robotic group. Robotic arm-assisted THA decreases the variation in acetabular component positioning compared to conventional THA. However, the benefit of this is unclear as there is little difference in dislocation rate. This study may demonstrate additional value in CT-based implant planning as this cohort had the lowest incidence of femoral component complications


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2021
Tanpure S Madje S Phadnis A
Full Access

The iASSIST system is a portable, accelerometer base with electronic navigation used for total knee arthroplasty (TKA) which guides the surgeon to align and validate bone resection during the surgical procedure. The purpose of this study was to compare the radiological outcome between accelerometer base iASSIST system and the conventional system. Method. A prospective study between two group of 36 patients (50 TKA) of primary osteoarthritis of the knee who underwent TKA using iASSIST ™ or conventional method (25 TKA in each group) from January 2018 to December 2019. A single surgeon performs all operations with the same instrumentation and same surgical approach. Pre-operative and postoperative management protocol are same for both groups. All patients had standardized scanogram (full leg radiogram) performed post operatively to determine mechanical axis of lower limb, femoral and tibial component alignment. Result. There was no significant difference between the 2 groups for Age, Gender, Body mass index, Laterality and Preoperative mechanical axis(p>0.05). There was no difference in proportion of outliers for mechanical axis (p=0.91), Coronal femoral component alignment angle (p=0.08), Coronal tibial component alignment angle (p=1.0). The mean duration of surgery, postoperative drop in Hb, number of blood transfusion didn't show significant difference between 2 groups (p>0.05). Conclusion. Our study concludes that despite being a useful guidance tool during TKA, iASSIST does not show any difference in limb alignment (mechanical axis), Tibial and femoral component alignment when compared with the conventional method


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 38 - 38
1 Feb 2021
Hickey M Anglin C Masri B Hodgson A
Full Access

Introduction. Innovations in surgical robotics and navigation have significantly improved implant placement accuracy in total knee arthroplasty (TKA). However, many comparative studies have not been shown to substantially improve revision rates or other clinical outcome scores. We conducted a simulation study based on the reported distribution of patient-specific characteristics and estimated potential effect of coronal plane alignment (CPA) on risk of revision to evaluate the hypothesis that most published study designs in this area have been too underpowered to detect improvements in revision rates. Methods. To model previously reported studies, we generated a series of simulated TKA patient populations, assigning each patient a set of patient-specific factors (age at index surgery, BMI, and sex (Fig.1a)), as well as one surgeon-controlled factor (CPA) (Fig.1b) based on registry data and published literature. We modelled the survival probability for an individual patient at time t as a Gaussian function (exp[-(t/(k∗τ. max. )). 2. ]), where τ. max. (99.5 years) is selected to ensure the mean survival probability of the patient population matched 92% at 15 years. The value of k was adjusted for simulated patients within a range of 0 to 1 as a function of their patient and surgeon-specific factors (Fig.2). To evaluate power associated with a study design, we ran a Monte Carlo simulation generating 10,000 simulated populations of ten different cohort sizes. We divided the patient population into two groups: one group was assigned CPAs governed by the precision of a navigated/robotic approach (σ=1.5°), and the other CPAs governed by the precision of a conventional approach (σ=3°). We then simulated the time to failure for each patient, computed the corresponding Kaplan-Meier survival curves, and applied a Log-Rank test to each study to test for statistical difference. From the 10,000 simulations associated with each cohort size, we determined the percentage of simulated studies that found a statistically significant difference at each time point. Results. Figure 3 shows a contour plot illustrating the probability that a survival analysis with a specific study design would find statistical significance between the conventional and navigated/robotic patient groups. Entries from recently published literature are overlaid for context. No studies achieved statistical significance (p<0.05). Discussion. The effectiveness of navigated/robotic surgery is one of the most controversial debates in orthopedic surgery. The results from this simulation suggest that most revision studies aiming to settle this debate are likely significantly underpowered, falling below the normal 80% threshold. Limitations of this analysis include using only a single surgeon-controlled variable in the survival simulation, and only a single precision for the navigated/robotic approaches. Further studies will include more implant-related risk factors and a wider range of precisions for navigated/robotic procedures. Based on this simulation, it appears the effect size afforded by navigated/robotic surgeries on revision rates in TKA surgery is too small to recommend broad application, especially since adoption could involve added costs and unforeseen risks associated with novelty. Clinically, it may be beneficial to examine the use of robotics/navigation on high-risk patients, where studies are likely to have higher power due to larger effect sizes. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 100 - 100
1 Apr 2019
Hasan M Zhang M Beal M Ghomrawi H
Full Access

Background. Effectiveness of computer-assisted joint replacement (CA-TJR) compared to conventional TJR has been evaluated by a large body of literature. Systematic reviews provide a powerful, widely accepted, evidence-based approach to synthesize the evidence and derive conclusions, yet the strength of these conclusions is dependent on the quality of the review. Multiple systematic reviews compared CA-TJR and conventional TJR with conflicting results. We aimed to assess the quality of these reviews. Methods. We searched MEDLINE, EMBASE, the Cochrane, and Epistemonikos to identify SRs published through May 2017. Full-text articles that met inclusion criteria were retrieved and assessed independently by two reviewers. Evidence was qualitatively synthesized and summarized. Outcome measures were categorized into functional, radiological, and patient safety related. The corrected covered area (CCA) was calculated to assess the degree of overlap between SRs in analyzing the same primary studies. The AMSTAR 2, a valid and reliable tool, was applied to rate the confidence in the results of the SRs (Shea et al., 2017). AMSTAR-2 has 16 domains, of which 7 are critical (e.g., justification for excluding individual studies) and 9 are non-critical (e.g., not reporting conflict of interest for individual studies). Reviews are rated as high (no critical or non-critical flaws), moderate (only non-critical flaws), low (1 critical flaw) and critically low (more than one critical flaw). Disagreement between the 2 reviewers was resolved by discussion with the senior author to achieve consensus. We reported the quality ratings of these studies and the frequency of critical and non-critical flaws. Results. Of 384 citations originally identified, 37 systematic reviews were included. Meta-analyses that addressed TKA showed discrepancy on functional (e.g. KSS), radiological (mechanical axis malalignment), and patient safety (e.g. adverse events) outcomes. Meta-analyses that addressed THA showed more consistent results. Moderate overlap was observed among TKA SRs (CCA=7%) and very high overlap among THA SRs (CCA=26%). Based on the AMSTAR 2 tool, 35 studies were rated critically low and two studies were rated low. Low rating was due to failure in: developing a review protocol (94.6%); using a comprehensive search strategy (56.8%), providing a list of excluded studies (89%); accounting for risk of bias in the primary RCTs (44%), accounting for the risk of bias of the primary studies when discussing the results (70%), performing appropriate statistical methods (53% for RCTs and 88% for non-RCTs), and adequately investigating publication bias (53%). Conclusions. Given the very low confidence in the results of the SRs comparing CA to conventional total joint arthroplasty, clinicians should interpret the results of these SRs with caution. High methodological quality SRs are needed to inform evidence-based clinical practice


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 46 - 46
1 Mar 2017
Teeter M Howard J Vasarhelyi E Yuan X McCalden R Naudie D
Full Access

Background. Patient specific instrumentation (PSI) for total knee replacement (TKR) has demonstrated mixed success in simplifying the operation, reducing its costs, and improving limb alignment. Evaluation of PSI with tools such as radiostereometric analysis (RSA) has been limited, especially for cut-through style guides providing mechanical alignment. The primary goal of the present study was to compare implant migration following TKR using conventional and PSI surgical techniques, with secondary goals to examine whether the use of PSI reduces operative time, instrumentation, and surgical waste. Methods. The study was designed as a prospective, randomized controlled trial of 50 patients, with 25 patients each in the PSI and conventional groups, powered for the RSA analysis. Patients in the PSI group received an MRI and standing 3-foot x-rays to construct patient-specific cut-through surgical guides for the femur and tibia with a mechanical alignment. All patients received the same posterior-stabilized implant, with marker beads inserted in the bone around the implants to enable RSA imaging. Intraoperative variables such as time, number of instrumentation trays used, and mass of surgical waste were recorded. Patients underwent supine RSA exams at multiple time points (2&6 weeks, 3&6 months and yearly) with 6 months data currently available. Migration of the tibial and femoral components was calculated using model-based RSA software. WOMAC, SF-12, EQ5D, and UCLA outcome measures were recorded pre-operatively and post-operatively. Results. There were no demographic differences between groups. One patient in the PSI group was revised for infection, and three patients required manipulation, with no revisions or manipulations in the conventional group. There was no difference in maximum total point motion between groups for the tibia (mean 0.50 vs. 0.50 mm, p = 0.98) or femur (mean 0.46 vs. 0.48 mm, p = 0.87). The PSI group displayed greater tibial posterior tilt (p = 0.048, Fig. 1) and greater femoral anterior tilt (p = 0.01) and valgus rotation (p = 0.04, Fig. 2) than the conventional group, but there were no other differences in migrations. The PSI group required less instrument trays than the conventional group (mean 4.8 vs. 8.1 trays, p < 0.0001), but procedure time was equivalent (mean 79 vs. 74 min, p = 0.06). The PSI group produced less recyclable waste (mean 0.3 vs. 1.4 kg, p < 0.001), but total waste (Fig. 3) was equivalent between groups (mean 10.1 vs. 10.6 kg, p = 0.32). At 6 months there was no difference between groups for SF-12, WOMAC, EQ5D, or UCLA scores. Discussion. At early RSA follow-up, the two groups were broadly similar in implant fixation except for small rotational changes in the tibial and femoral components. The PSI group provided minimal or no advantage over the conventional group for operative time, instrumentation used, or surgical waste produced. The observed increase in manipulations in the PSI group is concerning, and requires additional investigation. Further radiographic and economic analysis is underway to determine if there is any benefit to the use of PSI for TKR during the perioperative and early follow-up period. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 17 - 17
1 Feb 2017
Holdcroft L Van Citters D
Full Access

Introduction. Highly cross-linked (HXL) polyethylene has demonstrated clinical advantages as a wear resistant acetabular bearing material in total hip arthroplasty (THA) [1]. In vitro wear testing has predicted a tenfold reduction in the wear rate of HXL polyethylene, as compared to its conventional, non-HXL counterpart [2]. To date, radiographic studies of head penetration represent the state-of-the-art in determining clinical wear of polyethylene hip liners [3]. However, as the amount of wear drops to very low levels, it becomes important to develop a precise and reliable method for measuring wear, facilitating a comparison of clinical results to expectations. This study focuses on locating and quantifying the maximum linear wear of retrieved acetabular poly liners using a coordinate measuring machine (CMM). Specifically, HXL liners are compared to a baseline of conventional, non-HXL bearings. Methods. An IRB-approved retrieval laboratory received 63 HXL acetabular bearing retrievals from 5 manufacturers with in vivo durations of 1.01–14.85 years. These were compared with 32 conventional, non-HXL controls (including gas plasma, gamma-barrier and EtO) from 3 manufacturers with in vivo durations of 1.03–20.89 years. Liners were mounted in a tripod of axial contacts with the liner face positioned in a vertical plane. Each bearing was scanned with a CMM dual-probe head, with one horizontal probe scanning the articular surface and the other scanning the non-articular, sequentially. Surface-normal wall thickness values along each latitude were calculated using a custom developed algorithm (Figure 1). Because the liners are axially symmetric as manufactured, deviation in wall thickness at a given latitude represents linear wear [4]. Results. Total wear penetration for the HXL liners ranged from 0.02 to 1.03 mm, and for the conventional, non-HXL controls ranged from 0.07 to 6.85 mm. The HXL liners had an average linear wear rate of 0.02 mm/year, compared to 0.20 mm/year for the conventional, non-HXL controls (Figure 2). The direction of maximum wear, as measured in degrees from the cup pole, ranged from 8.32 to 73.86 degrees. Differences in wear rates as a function of crosslinking dose, as well as presence/absence of a lip can be identified. Discussion. This wear measurement study of retrievals is the first application of a novel CMM technique to locate and quantify wear in HXL liners compared to conventional polyethylene controls. The study confirms the expectations of a tenfold reduction in wear rates that were based on in vitro testing [2]. The results are consistent with those of radiographic studies that have documented lower wear of HXL polyethylene in the hip compared to conventional polyethylene [3]. However, the current technique offers higher precision and reliability, and eliminates the large proportion of negative wear measurements common amongst radiographic methods. A sufficient number of liners have been measured to begin to differentiate wear between different radiation doses


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 69 - 69
1 Apr 2019
Blevins K Danoff J Goel R Foltz C Chen AF Hozack W
Full Access

Introduction. The purpose of this study is to compare total and rate of caloric energy expenditure between conventional and robotic-arm assisted total knee arthroplasty (TKA) between a high volume “veteran” surgeon (HV) and a lower volume, less experienced surgeon (LV). Methods. Two specialized arthroplasty surgeons wore a biometric-enabled shirt and energy expenditure outcomes were measured (total caloric expenditure, kilocalories per minute, heart rate variability, and surgical duration) during 35 conventional (CTKA) and 29 robotic primary total knee arthroplasty (RTKA) procedures. Results. Overall, the rate of caloric expenditure was similar between RTKA (5.60 ±2.50 kcal/min) and CTKA (4.79cal/min ±1.79, p=0.25). With 6.15 minute longer operative times, the total energy expenditure (TEE) for RTKA (239.31±96.79 kcal) was higher thanCTKA(181.54 ±80.90 kcal, p<0.001). The HV surgeon's TEE (p<0.001) and rate of energy expenditure (REE) (p<0.001) were significantly higher in RTKA (261.53cal; 6.499cal/min) versus CTKA (71.00cal; 3.759cal/min). However, the LV surgeon's TEE and REE for RTKA (207.83cal; 4.32cal/min) and CTKA (195.81cal; 4.92cal/min) were not significantly different (p>0.05). Both surgeons (HV; LV) had significantly longer surgical durations (p<0.001) in RTKA (40.41 ±4.94min; 48.91 ±8.45min) compared to CTKA surgeries (18.75±4.27min; 40.4 ±8.34min), respectively. Conclusion. While REE did not varybetween CTKA and RTKA for the LV surgeon, it did vary significantly for the HV surgeon. Additionally, RTKA took longer and increased TEE, but one less operating room assistant was needed. Surgeons with less experience in TKA may be less likely to notice a difference in energy expenditure when utilizing robotic-arm assisted technology. It is possible that more experience with using the robotic arm could create efficiencies over time that may also reduce TEE


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 45 - 45
1 Jan 2016
Miyasaka T Kurosaka D Saito M Suzuki H Omori T Marumo K
Full Access

Background. Accuracy of implantation is a recognized prognostic factor for the long-term survival of TKA. The purpose of this study was to analyze the accuracy of component orientation and post-operative alignment of the leg following CT-based navigation-assisted TKA and to compare these parameters with those of a conventional surgical technique. Methods. We retrospectively compared the alignment of 130 total knee arthroplasties performed with a CT-based navigation system with that of 130 arthroplasties done with a conventional alignment guide system. The knee joints were evaluated using full-length weight-bearing antero-posterior and lateral radiographs. Results. The mean hip-knee-ankle angle, the frontal femoral component angle and the frontal tibial component angle were 180.7° (normal angle: 180.0°), 88.8° (90.0°) and 90.6°(90.0°), respectively, for the navigation-assisted arthroplasties and 180.9°(180.0°), 89.8°(90.0°) and 89.3°(90.0°), respectively, for conventional arthroplasties. The mean lateral femoral component angle and the femoral tibial component angle were 0.99° and 89.9°, respectively, for the navigation group and 2.62° and 88.5°, respectively, for the conventional group. All pre-operative leg axes of 10 outliers (HKA<177 or HKA>183) in the navigation group were over 193°, while in the conventional group, 23 outliers’ data were scattered. Conclusions. Our retrospective study with randomly assigned cases (consecutive patients in two separate hospitals) demonstrates significant improvements in component positioning with the CT-based navigation system compared to the conventional alignment guide system. Furthermore, we found that when analyzing cases within each group with pre-operative hip-knee-ankle angles lower and equal 192°, no outliers were found in the navigation group indicating a high level of alignment accuracy in this group. However, in cases with pre-operative hip-knee-ankle angles larger or equal 193°, outliers were found in both groups and no significant difference between the two groups was observed (p = 0.24). A detailed analysis of the outlier cases in the navigation group revealed that the femoral component was placed in the varus position. We thought that pre-operative underestimation of osteophytes of the medial femoral condyle might have led to a lateral shift of the femoral component during its intra-operative placement and was one of the contributing factors causing lower alignment accuracy


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 42 - 42
1 Dec 2017
Steimer D Suero E Luecke U Stuebig T Krettek C Liodakis E
Full Access

INTRODUCTION. To test whether there are differences in postoperative mechanical and component alignment, and in functional results, between conventional, navigated and patient-specific total knee arthroplasties in a low-volume centre?. MATERIAL AND METHODS. Retrospective cohort study of 391 patients who received conventional, navigated or patient- specific primary cemented TKA in a low-volume hospital. RESULTS. The risk of mechanical alignment outliers was 89% lower in the navigated group compared to the conventional TKA group. There was a 63% lower risk of femoral component malalignment and a 66% lower risk of tibial component malalignment in the navigated group. No significant reduction in the risk of malalignment was seen in the patient-specific group. Total WOMAC and Oxford scores were no different between the three techniques. The patient-specific group reported better WOMAC pain scores. PSI TKA was 33% more expensive than conventional TKA and 28% more expensive than Navigated TKA. DISCUSSION. Navigated TKA improved alignment, but neither navigated nor patient-specific TKA improved functional outcomes. Patient-specific TKA was more expensive, with little additional benefit. Clinical relevance: The routine use of patient-specific instrumentation in low-volume centers is not supported by the currently available data


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 21 - 21
1 Feb 2020
Park C Kang S Song S
Full Access

Purpose. The purpose of the present study was to evaluate the intercompartmental loads with a sensor placed on implants after conventional gap balancing during total knee arthroplasty (TKA) with a tensiometer. Methods. Fifty sensor-assisted TKA procedures were performed prospectively between August and September 2018 with a cruciate-retaining prosthesis. After applying a modified measured technique, conventional balancing between the resected surfaces was achieved. The equal and rectangular flexion–extension gaps were confirmed using a tensiometer. Then, the load distribution was evaluated with a sensor. Results. The average load of the medial compartment was greater than that of the lateral compartment in both the flexion and extension of the knee. The proportion of medial–tight coronal load imbalance (medial load – lateral load ≥ 15 lb) was 50% in the extension and 28% in the flexion positions, respectively (p = 0.035). The loads in each medial and lateral compartment increased with extension of the knee; of note, the amount of increase was higher in the medial compartment (9.7 lb vs. 4.0 lb; p < 0.001). The proportion of the extension–tight sagittal load imbalance (extension load – flexion load ≥ 15lbs) was 34% in the medial compartment and 4% in the lateral compartment (p < 0.001). Conclusions. Coronal and sagittal load imbalances existed as determined by the sensor even after the achievement of appropriate conventional gap balance. The use of an intraoperative load sensor offers the advantage of being able to directly evaluate the load on TKA implants following surgery