Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive. We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of
Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results. In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and
Objectives. There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. Methods. BMP-2 was synthesised using an
Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel. We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains. Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against
Protocols for processing of tissue from arthroplasty infections vary and might affect the recovery of bacteria. We compared homogenization, bead beating and enzymatic disruption for recovery of live bacteria from tissue samples. Suspensions of Staphylococcus aureus and
Introduction. Prosthetic joint infections (PJI) occur infrequently, but due to its increased clinical use represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus and coagulase-negative staphylococci are the most common infecting agents associated with PJI. A possible therapeutic approach could be the local antibiotic by fluoride-TiO2 nanostructured anodic layers in order to prevent surface colonisation during the early moments after surgery. Here we describe the first results of this model using two common antibiotics. Methods. Fluoride-TiO2 nanostructured anodic layers on Ti6Al4V alloy were produced as described previously by Arenas et al (2013). Discs shaped pieces of Ti6Al4V alloy were loaded with a solution of 150 mg antibiotic (vancomycin or gentamicin)/20 ml sterile distilled water. Samples were immersed in this solution during 24 hours at room temperature with agitation, and then were dried during 48 hours at 20°C. Antibiotic release was studied by introducing both discs in sterile PBS and samples were taken at different times. Samples were then frozen at −80°C until HPLC measurements and biological activity tests using Bacillus subtilis ATCC 6051 (vancomycin) and
We describe a case series using calcium sulphate bio composite with antibiotics (Cerament/Stimulan) in treating infected metalwork in the lower limb. Eight patients aged 22–74 (7 males, 1 female) presented with clinical evidence of infected limb metal work from previous orthopaedic surgery. Metal work removal with application of either cerement in 5 cases (10–20ml including 175mg–350mg gentamycin) or stimulan in 3 cases (10–20ml including either 1g vancomycin or clindamycin 1.2g or 100mg tigecycline) into the site was performed. Supplemental systemic antibiotic therapy (oral/intravenous) was instituted based on intraoperative tissue culture and sensitivity. Four patients had infected ankle metalwork, 2 patients infected distal tibial metalwork and 2 had infected external fixators. Metal work was removed in all cases. The mean pre operative CRP was 15.8mg/l (range 1–56mg/l). The mean postoperative CRP at 1 month was 20.5mg/l (range 2–98mg/l). The mean pre op WCC was 7.9×10. 9. (range 4.7–10.5 ×10. 9. ). Mean post op WCC at 1 month was 7.1×10. 9. (range 5.0–9.2×10. 9. ). The organisms cultured included enterobacter, staphylococcus aureus, staphylococcus epidermidis, staphylococcus cohnii, stenotrophomonas, acinetobacter, group B streptococcus, enterococcus and
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus and coagulase-negative S. epidermidis are the most commonly infecting agents associated with PJI. Nowadays, Gram-negative species like
Infection rates following arthroplasty surgery are between 1–4%, with higher rates in revision surgery. The associated costs of treating infected arthroplasty cases are considerable, with significantly worse functional outcomes reported. New methods of infection prevention are required. HINS-light is a novel blue light inactivation technology which kills bacteria through a photodynamic process. The aim of this study was to investigate the efficacy of HINS-light for the inactivation of bacteria isolated from infected arthoplasty cases. Specimens from hip and knee arthroplasty infections are routinely collected to identify causative organisms. This study tested a range of these isolates for sensitivity to HINS-light. During testing, bacterial suspensions were exposed to increasing doses of HINS-light of (123mW/cm. 2. irradiance). Non-light exposed control samples were also set-up. Bacterial samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation was achieved for all Gram positive and negative microorganisms. More than a 4-log reduction in Staphylococcus epidermidis and Staphylococcus aureus populations were achieved after exposure to HINS-light for doses of 48 and 55 J/cm. 2. , respectively. Current investigations using
Introduction. Open fractures occur with an annual incidence of 11.5 per 100,000 (6900 pa in UK). Infection rates, even with intravenous broad-spectrum antibiotics, remain as high as 22%. For this reason necessary bone grafting is usually delayed until soft-tissue cover of the bone injury is achieved. A biodegradable bone graft that released sustained high concentrations of antibiotics and encouraged osteogenesis, that could be implanted safely on the day of injury would reduce infection rates and avoid reoperation and secondary grafting. The non –union rate (approx 350 pa in UK) should also be reduced. Such a graft, consisting of a PLA/PGA co –polymer and containing antibiotics, is under development and here we report assessment of spectrum and duration of antimicrobial activity and effect of addition of antibiotics on mechanical properties. Methods. Varying concentrations of gentamicin, colistin, clindamycin and trimethoprim, singly and in combination, were added to the copolymer and test pieces were made. These were then tested using an established method (SPTT) which determines degree and duration of antimicrobial activity as well as risk of emerging resistance. Test bacteria were Staphylococcus epidermidis, Staphylococcus aureus, MRSA and
Summary. Prosthetic UHMWPE added with vitamin E and crosslinked UHMWPE are able to decrease significantly the adhesion of various bacterial and fungal strains limiting biomaterial associated infection and consequent implant failure. Introduction. Polyethylene abrasive and oxidative wear induces overtime in vivo a foreign-body response and consequently osteolysis, pain and need of implant revision. To solve these problems the orthopaedic research has been addressed to develop new biomaterials such as a crosslinked polyethylene with a higher molecular mass than standard Ultra High Molecular Weight Polyethylene (UHMWPE), and consequently a higher abrasive wear resistance and an antioxidant (vitamin E)-added UHMWPE to avoid oxidative wear. Nevertheless a feared complication of implant surgery is bacterial or fungal infection, initiated by microbial adhesion and biofilm formation, and related to the biomaterial surface characteristics. Staphylococci are the most common microorganisms causing biomaterial associated infection (BAI), followed by streptococci, Gram-negative bacilli and yeasts. With the aim to prevent BAI, the purpose of this study was to evaluate the adhesion of various microbial strains on different prosthetic materials with specific surface chemical characteristics, used in orthopaedic surgery. Methods. We compared the effects of vitamin E-added UHMWPE and crosslinked UHMWPE with that of standard GUR 1020 UHMWPE, upon the adhesion of ATCC biofilm-producing strains of Staphylococcus epidermidis, S. aureus,
High-intensity narrow-spectrum (HINS) light is
a novel violet-blue light inactivation technology which kills bacteria through
a photodynamic process, and has been shown to have bactericidal
activity against a wide range of species. Specimens from patients
with infected hip and knee arthroplasties were collected over a
one-year period (1 May 2009 to 30 April 2010). A range of these
microbial isolates were tested for sensitivity to HINS-light. During
testing, suspensions of the pathogens were exposed to increasing
doses of HINS-light (of 123mW/cm2 irradiance). Non-light exposed
control samples were also used. The samples were then plated onto
agar plates and incubated at 37°C for 24 hours before enumeration.
Complete inactivation (greater than 4-log10 reduction)
was achieved for all of the isolates. The typical inactivation curve
showed a slow initial reaction followed by a rapid period of inactivation.
The doses of HINS-light required ranged between 118 and 2214 J/cm2.
Gram-positive bacteria were generally found to be more susceptible
than Gram-negative. As HINS-light uses visible wavelengths, it can be safely used
in the presence of patients and staff. This unique feature could
lead to its possible use in the prevention of infection during surgery
and post-operative dressing changes. Cite this article:
Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Objectives
Methods
We have designed a prospective study to evaluate
the usefulness of prolonged incubation of cultures from sonicated
orthopaedic implants. During the study period 124 implants from
113 patients were processed (22 osteosynthetic implants, 46 hip
prostheses, 54 knee prostheses, and two shoulder prostheses). Of
these, 70 patients had clinical infection; 32 had received antibiotics
at least seven days before removal of the implant. A total of 54 patients
had sonicated samples that produced positive cultures (including
four patients without infection). All of them were positive in the
first seven days of incubation. No differences were found regarding
previous antibiotic treatment when analysing colony counts or days
of incubation in the case of a positive result. In our experience, extending
incubation of the samples to 14 days does not add more positive
results for sonicated orthopaedic implants (hip and knee prosthesis
and osteosynthesis implants) compared with a conventional seven-day incubation
period. Cite this article:
Osteoarthritis (OA) is an important cause of
pain, disability and economic loss in humans, and is similarly important in
the horse. Recent knowledge on post-traumatic OA has suggested opportunities
for early intervention, but it is difficult to identify the appropriate
time of these interventions. The horse provides two useful mechanisms
to answer these questions: 1) extensive experience with clinical
OA in horses; and 2) use of a consistently predictable model of
OA that can help study early pathobiological events, define targets
for therapeutic intervention and then test these putative therapies.
This paper summarises the syndromes of clinical OA in horses including
pathogenesis, diagnosis and treatment, and details controlled studies
of various treatment options using an equine model of clinical OA.
Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.