Purpose:. Anterior positioning of a cephomedullary nail (CMN) in the distal femur occurs in up to 88% of cases. Conventionally, this is considered to occur because of a mismatch between the radius of curvature (ROC) of the femur and that of available implants. The hypothesis for this study was that the relative thicknesses of the cortices of the femur, particularly the posterior cortex are important in determining the final position of an intramedullary implant and that the posterior cortical thickness corresponds to the linea aspera anatomically. The aim was to determine if these measurements changed with age. Method:. This study used the data from CT scans undertaken as part of routine clinical practice in 919 patients with intact left femora (median age 66 years, range 20–93 years; 484 male and 435 female). The linea aspera was defined manually on the template bone by consensus between two orthopaedic surgeons and two anatomists. The length of the femur was measured from the tip of the greater trochanter proximally to the intercondylar notch distally. Transverse intervals were plotted on the femur between 25%–60% femoral bone length (5% increments). The linea aspera was then defined at each interval on the template bone and mapped automatically to all individual femora in the database. Results:. The linea aspera was found to be internally rotated as compared to the sagittal plane referenced off the posterior femoral condyles. An age related change in the posterior/anterior cortical thickness ratio was demonstrated. This ratio increases in all age groups from 25–60% bone length being maximal around 45–55% bone length. The ≥80 year old cohort shows a disproportional posterior/anterior ratio increase of 70.0% from 25–50% bone length as compared to 48.1% for the <40 year old cohort which is statistically significant (Mann-Whitney-Test p<0.05, α = 5%). Conclusion:. This study presents a novel method of investigating
The value of collared stems for uncemented implants remains controversial. Some comparative studies have demonstrated advantages of collared stems regarding the potential for subsidence. Other studies with longer follow-up have shown no adverse effect of the use of a collar regarding the femoral component survivorship. To date, the adequate size of the collar with regards to the anatomy of the proximal femur has never been studied. The goal of this study was to assess whether the size of the collar needs to be adjusted according to the size of the femoral component used, and according to the use of a standard or a lateralized component. 102 CT of normal femurs have been divided into 2 groups of 51 femurs each. Each group has been analysed by 2 independant surgeons. Each CT view passed through the axis of the proximal diaphysis and the center of the femoral head. The scale was 100%. Templates of femoral components have been set in order to reproduce the center of rotation and an optimal filling of the proximal femoral canal. Sizes of the femoral components as well as the need for standard or lateralized implants have been recorded. In order to determine the ideal size of the collar, the distance between the medial edge of the prothesis and the medial edge of the femur (so-called P-C distance) at the level of the neck cut (calcar) has been measured.Introduction
Materials and Method
Tibial and femoral component overhang in total knee arthroplasty (TKA) is a source of pain, thus is it important to understand anatomic differences between races to minimize overhang by matching the tibial and femoral shaft axis to the knee articular surface. Thus, this study compared knee morphology between Caucasian and East Asian individuals to determine the optimal placement of tibial and femoral stems. A retrospective study was conducted on a matched cohort of 50 East Asians (21F, 29M) and 50 Caucasians (21F, 29M) by age and gender. CT scans were obtained in healthy volunteers using <2mm slices. The distance from the proximal tibial diaphysis axis to the tibial plateau center was measured, and the distance from the distal femoral diaphysis axis to the center of distal femoral articular surface was measured. Tibial measurements were made using Akagi's AP axis and the widest ML diameter, and femoral measurements were based on Whiteside's line and the surgical epicondylar axis.Purpose
Methods
Primary total hip replacement (THR) in patients with abnormal/altered proximal
Cementless femoral components have an excellent track record that includes efficient implantation and long-term survival, thus are the predominant stem utilised in North America. Femoral component stability and resistance to subsidence are critical for osseointegration and clinical success. Implant design, surgical technique, anatomic fit, and patient characteristics, such as bone quality, can all effect initial implant stability and resistance to subsidence. Variability in stem shape and in the anatomy of the proximal femoral metaphysis has been implicated in the failure of some stem designs. Biologic fixation obtained with osseointegration of cementless implants may improve implant longevity in young, active, and obese patients. Lack of intimate fit can lead to clinical complications such as subsidence, aseptic loosening, and peri-prosthetic fracture. Currently, there are several stem designs, all of which aim to achieve maximal femoral stability and minimal subsidence and include: Fit and Fill / Double Taper Proximally Porous Coated Stems; Parallel Sided Taper Wedge or “Blade” Stems; Wagner Style Conical Shape Splined Titanium Stems; Tapered Rectangular Cross-Section Zweymuller Stem; Fully-Porous Coated Stems; Modular Proximal Sleeve Fluted Stem; Anatomic Proximally Porous Coated Stems. The majority of patients with relatively straightforward anatomy can be treated with any of the aforementioned femoral implant types. However, more complicated
INTRODUCTION. Childhood diseases involving the proximal femoral epiphysis often cause abnormalities that can lead to end-stage arthritis at a relatively young age and the need for total hip arthroplasty (THA). The young age of these patients makes hip resurfacing arthroplasty (HRA) an alternative and favorable option due to the ability to preserve femoral bone. Patients presenting with end-stage hip arthritis as sequelae of childhood diseases such as Legg-Calves-Perthes (LCP) and slipped capital femoral epiphysis (SCFE) pose altered
Three basic design concepts of cementless femoral fixation have emerged. They include: anatomic designs, straight stem designs, and tapered designs. In addition, there have been modular designs. The most successful have been designs that have a metaphyseal sleeve with a tapered stem. A more recent newer concept has been the double taper neck designs which have not performed well in general. Anatomic Stem Designs: The rationale for an anatomic stem design was to design a component that matched the sagittal plane bow of the femur. The APR (Centerpulse, Austin, Texas) and the PCA (Howmedica, Rutherford, New Jersey) were the initial designs. Although these designs provided excellent micromotion stability, they are not used in their present length today because they could not fit in to all femurs. Straight Stem Designs: The concept of a straight stem design was to machine the femur to accept the prosthesis. This was done with diaphyseal reaming, proximal broaching, and preparing a proximal triangle to accommodate the proximal metaphyseal portion of the stem. These had previously, and still do, come in proximally coated and distally coated designs. They have proven to be durable long term. The AML fully coated stem (DePuy, Warsaw, Indiana) was and still is the prototype device. Tapered Stem Designs: The most popular designs today are the tapered stems. They are inserted either by a broach only, or ream and broach technique. Some only taper in the ML plane and are flat in the AP plane. These are called ML taper or blade devices (Taperloc and Trilock). These are usually inserted broach only. Some have a double taper with proximal fill and include the Zweymuller stem (Zimmer, Warsaw, Indiana), the Omnifit stem (Stryker, Mahwah, New Jersey), the Summit stem, and the Corail stem (both DePuy, Warsaw, Indiana). Some are hydroxyapatite coated (Omnifit and Corail), some are porous coated (Summit), and some are only grit blasted (Zweymuller). Some are broach only including the Zweymuller and Corail, and some are broach and ream including the Omnifit and Summit. Some are tapered throughout, one of which is a Wagner type design, Trilogy (Zimmer, Warsaw, Indiana). These Wagner type devices are useful in abnormal anatomy (CDH and Perthes). Modular Stem and Dual Modular Neck Designs: Metaphyseal sleeve modular stem designs are extremely versatile and can be inserted press fit into just about any
The quality of femoral stem cementation has been shown to be a useful indicator of long-term survival of the total hip arthroplasty. Barrack's cementation grading is widely used but has certain limitations. It is based upon second-generation cementation technique and has high inter- and intra-observer variability. We introduce a new femoral cementation index based upon lengths of radiological lucency and cement-bone interface on AP and lateral views. Five observers graded femoral cementation of radiographs of 30 primary hip arthroplasties using Barrack's grading and the new index on two occasions and Inter- & Intra-observer reliability was assessed. We also assessed the correlation between proximal
Introduction. The effect of the implant posterior condylar offset has recently generated much enthusiasm among researchers. Some reports were concerned about the relationship between the posterior condylar offset and an extension gap. However, the posterior condylar offset was measured in a flexed knee position or in reference to
Introduction. The gold standard for knee surgery is the restoration of the so-called «neutral mechanical alignment ». Recent literature as pointed out the patients with «constitutional varus »; in these cases, restoring neutral alignment could be abnormal and even undesirable. The same situation can be observed in patients with «constitutional valgus alignment ». To date, these outliers cases have only been explored focusing on the lower limb; the influence of the pelvic morphotype has not been studied. Intuitively, the pelvic width could be a significant factor. The EOS low dose imaging technique provides full body standing X-rays to evaluate the global anatomy of the patient. This work explores the influence of the pelvic parameters on the frontal knee alignment. Material and methods. – We included 170 patients (340 lower extremities). 2 operators performed measurements once per patient on AP X-rays. The classical anatomical parameters were:. –. Femoral mechanical angle (FMA). –. Tibial mechanical angle (TMA). –. Hip knee shaft angle (HKS). –. Hip knee ankle angle (HKA). –. Femoral and tibial lengths. The morphotype was evaluated by:. –. the distances between the center of two femoral heads (FHD), between knees (KD) and between ankles (AD). –. the medial neck-shaft angle (MNSA). –. the femoral offset. The horizontal distance between the limb mechanical axis (line passing from center of the femoral head to the center of the ankle) and the center of the knee was called the intrinsic mechanical axis deviation (IMAD) (fig 1). The horizontal distance between the pelvic mechanical axis (line from the center of the sacral plate to the center of the ankle) and the center of the knee was called the global mechanical axis deviation (GMAD) (fig 2). Inter-Operator Reliability was calculated with Intra-class Correlation Coefficient (ICC) and Inter-Reader Agreement was assessed with Bland-Altman test. A relationship between IMAD and GMAD to the other parameters was assessed using Pearson's correlation coefficient. Results. Inter-Operator Reliability was high for femoral offset, TMA and MSNA (ICC > 0,88) and very high for the other parameters (ICC > 0,93). These values are given in table 1 and all the 2D parameters are given in the table 2. IMAD was significantly correlated with HKA (r = 0,99), FMA (r = −0,58), TMA (r = −0,61) and KD (r = 0,72). GMAD was significantly correlated with HKA (r = 0,94), FMA (r = −0,53), TMA (r = −0,60) and KD (r = 0,67). Two groups were identified according to pelvic width (FHD):. Group 1 (standard patients): Pelvic width < 18 cm (164 lower extremities). Group 2 (wide pelvis): Pelvic width ≥ 18 cm (176 lower extremities). For standard patients the FHD is a significant parameter, whereas the proximal
The initial success of modern total hip arthroplasty can in large part be attributed to the reliable fixation of the femoral component with the use of acrylic bone cement. Early success with cement led to a common pathway of development in North America and the European countries. Much of the early to mid-term research concentrated on refinement of variables related to the methodology and technique of cement fixation. Scandinavian registries were subsequently able to report on improved survivorship with better cementing technique. The net effect has been standardisation towards a small number of cemented implants with good long-term outcomes representing the majority of stems implanted in Sweden, for example. In North America, during the mid-term development of THA in the late 1980's, the term “cement disease” was coined and the cemented THA saw a precipitous decline in use, now to the point where many American orthopaedic residents are completing training never having seen a cemented THA. Modern uncemented femoral components can now claim good long-term survivorship, perhaps now comparable to cemented fixation. However, this has come at a cost with respect to the premium expense applied to the implant itself as well as lineage of failed uncemented constructs. The last several years have seen a proliferation of uncemented implants, usually at a premium cost, with no demonstrated improvement in survivorship. Osteolysis has not been solved with uncemented implants and cement disease has largely been recognised as a misnomer. Long-term outcomes of cemented femoral fixation have consistently demonstrated excellent survivorship, even in the younger age group. Cemented stems allow for variable positioning of the stem to allow for better soft tissue balancing, without the need for proximal modularity. Cemented stems are more forgiving and fail less often secondary to a reduced incidence of intra-operative complications, such as peri-prosthetic fracture. Cemented stems tend to be less expensive and also have the advantage of adding antimicrobial agents into the cement. This is important in emerging markets. The next iteration of orthopaedic innovation driven by the emerging markets may indeed be back to the future. Key Points: The initial success of total hip arthroplasty was based on cemented femoral fixation. Long-term outcomes in the United States demonstrate good results for cemented femoral fixation. Despite this, cemented fixation is not frequently used in the United States. Results from multiple national joint replacement registries demonstrate superior long-term performance of cemented femoral fixation. European countries, perhaps because of the excellent results in the national registries, use cemented femoral fixation more often than not. Cemented femoral fixation is cost neutral if not less expensive and allows for the addition of antimicrobials. Cemented femoral fixation is perhaps easier to perform as the component can be potted in a range of positions as opposed to the position being dictated by the
While short stem designs are not a new concept, interest has surged with increasing popularity of less invasive techniques. If the goal of the tapered stem is to load preferentially proximally, why do we need a stem at all? Perhaps the only reason to use a tapered, long stem is to prevent varus; however, studies have shown that varus malalignment of a tapered stem does not affect results. Short stems are easier to insert, especially when using an anterior approach such as the anterior supine intermuscular in which the proximal femur is elevated anteriorly from the wound during stem insertion. Femoral preparation can be accomplished with straightforward broaching of the canal, without use of reamers. Short stems are bone conserving. They violate less femoral bone stock, providing more favorable conditions should a revision be required. However, ease of insertion and bone conservation matter little if not supported by clinical results. Thus, we reviewed our early experience with 2094 patients undergoing 2457 primary THA using short, tapered titanium, porous plasma spray-coated femoral components since January 2006 at our center. The TaperLoc Microplasty stem (Biomet, Warsaw, IN) has been used in 1881 THA, and the TaperLoc Complete Microplasty stem (Biomet) in 576. Patient age averaged 63.6 years. Increased offset was used in 1990 hips (81%). The surgical approach was less invasive direct lateral (LIDL) in 1194 THA (49%), anterior supine intermuscular (ASI) in 1117 (46%), and standard direct lateral (Std) in 146 (6%). Follow-up averaged 20 months. Thirty-five stems (1.4%) have been revised: 15 for infection (12 LIDL, 3 ASI), 1 same day revision for intraoperative femoral shaft perforation (Std), 1 at 3 days for patellar dislocation (LIDL), 2 for early subsidence (1 LIDL, 1 ASI), 13 for periprosthetic femoral fracture (1 Std, 12 ASI), 2 for aseptic loosening (1 LIDL, 1 ASI), and 1 stem well fixed (ASI) removed for loose cup and unable to disarticulate trunnion. What lessons have we learned? First, we usually require one or two diameter sizes larger with short porous tapered stem versus the standard length version of the same design. The surgeon should be aggressive with sizing, pushing to the largest size possible. Use the broach like a rasp. Drive the component in valgus during insertion. Upon seating the component, do a trial reduction using the shortest available neck length. The component will generally sit slightly prouder than the broach and may require additional effort to seat completely. Conservation of existing bone stock, compatibility with soft-tissue sparing surgery, more physiologic loading of the proximal femur, and versatility with varying
Proper restoration of posterior condylar offset during TKA has been shown to be important to maximize range of motion and minimize flexion instability. However, there is little information as to the importance of restoration of mid-sagittal femoral geometry. There is controversy as to whether a TKA prosthesis should have a single radius or multiple radii of curvature. The purpose of this study is to evaluate the effectiveness of a multi-radius femoral component at restoring mid sagittal femoral offset. A consecutive series of 100 TKAs with digital preoperative and postoperative radiographs and standardized radiographic markers were analyzed. There were 71 female and 29 male knees with mean age of 59 years. All TKAs were performed by a single surgeon using a multi-radius femoral component design. The distal femoral resection was set to resect 10 mm from the distal femoral condyle and a posterior referencing system was used to size the femoral component. Using radiographic perfect lateral projections of the knees, a line was drawn along the posterior femoral shaft and another parallel line down the anterior femoral shaft. A 3rd line was then drawn parallel to the posterior shaft at the furthest point posterior on the condyle. A 4th line was drawn parallel to the anterior shaft at the furthest point anterior on the femur. 90 degree angles were constructed to create a grid in the anterior and posterior directions, similar to a previously reported technique. Finally, 45 degree angle lines were created in the grid to assess mid flexion dimensions [Fig-1 and 2]. The percent change in posterior condylar offset (PCO), anterior femoral offset (AFO), mid femoral anterior offset (MAFO) and mid femoral posterior offset (MFPO) were calculated. The mean reproduction of the mid-anterior femoral offset and mid-posterior femoral offset were 101.1% [range 56.5%–167.5%] and 96.8% [range 54.9%–149.0%] of preoperative measurements respectively. The average restoration of posterior offset and anterior offset were 92.8% [range 49.0%–129.8%] and 115.3% of preoperative measurements [range 35.7%–400.0%] respectively. When the posterior condylar offset was restored to within 10% of the native anatomy, the MPFO restoration more closely resembled normal anatomy (103.0% vs. 93.9%, p = 0.005). When the postoperative posterior condylar offset was decreased greater than 20%, both the MAFO (90.1% vs. 104.5%, p = 0.004) and MPFO (78.5% vs. 102.9%, p < 0.001) decreased compared to the native knee. There was no relationship between restoration of the PCO and the MAFO correction (104.6% vs. 99.4%, p = 0.213). Finally, there was no correlation between restoration of anterior femoral offset within 10% of normal and the restoration of mid sagittal femoral offset; 98.0% vs 102.0% for MAFO (p = 0.320) and 98.7% vs 96.3% for MPFO (p = 0.569). A modern multi-radius condylar knee design is capable of reproducing the mid-sagittal geometry of the preoperative knee. However, the restoration of mid sagittal offset is largely dependent on the restoration of the posterior condylar offset. Intraoperative adjustments in anterior and posterior femoral resections can have significant impact in the ability of the implant to reproduce mid-sagittal
[Objective]. The objectives of this study are to measure the morphometric parameters of pre-operative distal femur in Japanese patients who received TKA, to investigate the differences in distal
Cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sexes and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimization of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially for Anterior and MIS exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal
As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimization of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal
As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimization of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal
As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimisation of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal
As an increasing number of young, active large patients become candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long term fixation and excellent, near normal function. However, a number of issues related to cementless stem fixation could be further improved:
. –. Optimisation of load transfer to proximal femur to minimize fracture risk and maximize bone preservation. –. Elimination of proximal-distal mismatch concerns, including bowed femurs. –. Facilitation of femoral stem insertion, especially with MIS THA exposures. –. Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include:
. –. Ease of insertion. –. Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal