Introduction and Aims. A recent submission to ASTM, WK28778 entitled “Standard test method for determination of
To improve the longevity of total hip replacements (THR), it is necessary to prevent wear of the ultra-high molecular weight polyethylene (UHMWPE) bearing, as wear debris can cause osteolysis and aseptic loosening. Highly cross-linked UHMWPE reduces wear, sometimes stabilized with vitamin E to preserve its mechanical properties and prevent oxidative degeneration. An extra novel solution has been grafting the surface of UHMWPE with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). This treatment uses a hydrophilic (wettable) phospholipid polymer to improve lubrication and reduce
Introduction. Modularity allows surgeons to use femoral heads of various materials, diameters and offsets to achieve the best possible outcome, nevertheless the fretting corrosion behaviour of modular junctions can be significantly affected. The aim of this study was to assess physiological
Poly (vinyl alcohol) (PVA) hydrogel with high water content is one of the potential materials for artificial cartilage. In the previous study, the wear behavior of PVA hydrogel prepared by freeze-thawing (FT) method (PVA-FT gel) showed the excellent
In joint prostheses where ultra-high molecular weight polyethylene (UHMWPE) is used as bearing material, efficacious treatments such as crosslinking, addition of vitamin E and the grafting of phospholipid polymer are known to improve wear resistance. Under severe conditions of various daily activities, however,
Introduction. Wear plays a key role in the clinical outcome of total hip replacements (THR). In addition, increased
Damage to metallic femoral heads can occur in vivo. Testing of hip prostheses under abrasive conditions is one among various efforts needed towards more realistic and harsher testing. Abrasion likely increases both wear and
Introduction. It has been speculated that impact deformation of thin 1-piece cups used for modern metal-on-metal hip replacement may contribute to early failure. The purpose of this study was to reproduce typical impact deformation and quantify the effect of this on the
Reducion of
Introduction. Frictional behavior and, therefore, the coefficient of
Introduction. Hip simulator studies show that metal-on-metal bearing wear can be reduced by reducing the diametral clearance of the bearing. We present the six-year follow-up results of a prospective clinico-radiological and metal ion study in patients with a low clearance metal-metal surface arthroplasty. The results are compared to published results of similar design bearings with conventional clearance. Methods. Twentysix male patients (mean age 55 years, mean BMI 26) who received a 50 mm bearing resurfacing (radial clearance 50μm) were included in an ongoing clinico-radiological and metal ion study. Urine/blood specimens were obtained before and periodically after hip resurfacing. Patients were also assessed with Oxford Hip Scores and Harris Hip Score questionnaires. Two hips were excluded during follow-up, one for revision and another for contralateral hip arthroplasty. Results. Twentyone patients have so far been reviewed at the six-year stage and had excellent hip function (Median Oxford score 13/60 and median Harris Hip Score 89/90). Metal ion data shows encouraging results with mean daily output of cobalt and chromium in urine at 6 years being 3.8 μg/24 hr and 2.2 μg/24 hr respectively. The mean whole blood concentrations for cobalt and chromium were 0.5 μg/l and 1.42 μg/l respectively. Three patients who we reported earlier had radiolucent lines in acetabular zones 1 and 2 continue to have these features, albeit asymptomatic. Discussion and Conclusion. Metal ion levels in this group are lower compared to earlier published reports with similar design bearings with conventional clearance. However the presence of radiolucencies raises the concern that reduced clearance affects early implant fixation possibly from increased
Polyimide (MP-1, MMATech, Haifa, Israel), is a high performance aerospace thermoplastic used for its lubricity, stability, inertness and radiation resistance. A wear resistant thin robust bearing is needed for total hip arthroplasty (THR). After independent laboratory testing, in 2006, the author used the material as a bearing in two Reflection (Smith and Nephew, USA) hip surgeries. The first, a revision for polyethylene wear, survives with no evidence of wear, noise, new osteolysis or complications related to the MP-1 bearing after 16 yrs. The second donated his asymptomatic MP-1 hip at 6.5yrs for post-mortem examination. There were no osteoclasts, cellular reaction bland in contrast to that of polyethylene. In 2013 a clinical study with ethical committee approval was started using a Biolox Delta (Ceramtec, Germany) head against a polyimide liner in 97 patients. MMATech sold all liners, irradiated: steam 52:45. Sixteen were re-machined in New Zealand. Acetabular shells were Delta PF (LIMA, Italy). The liner locked by taper. The cohort consisted of 46:51 M:F, and ages 43 to 85, mean 65. Ten received cemented stems. For contralateral surgery, a ceramic or polyethylene liner was used. Initial patients were lower demand, later, more active patients, mountain-biking and running. All patients have on-going follow up, including MP-1 liner revision cases. There has been no measurable wear, or osteolysis around the acetabular components using weight-bearing radiographs. Squeaking within the first 6 weeks was noted in 39 number of cases and subtle increase in palpable
Introduction.
Introduction. Relative motion at the modular head-neck junction of hip prostheses can lead to severe surface damage through mechanically-assisted corrosion. One factor affecting the mechanical performance of modular junctions is the
Introduction. The metal-on-metal (MoM) total hip prosthesis is widely used. However, the adverse reactions such as pseudotumor around the total hip prosthesis are observed. This is considered the effect of the corrosion of alloy which includes metal ion release and the wear particle generation. As materials for total hip prostheses, cobalt chromium (Co-Cr) alloy is used because of the wear resistance and corrosion resistance. The passive film on the surface of alloy contributes to corrosion resistance. The passive film is removed easily with
Introduction. Geometric variations of the hip joint can give rise to abnormal joint loading causing increased stress on the articular cartilage, which may ultimately lead to degenerative joint disease. In-vitro simulations of total hip replacements (THRs) have been widely reported in the literature, however, investigations exploring the tribology of two contacting cartilage surfaces, and cartilage against metal surfaces using complete hip joint models are less well reported. The aim of this study was to develop an in-vitro simulation system for investigating and comparing the tribology of complete natural hip joints and hemiarthroplasties with THR tribology. The simulation system was used to assess natural porcine hip joints and porcine hemiarthroplasty hip joints. Mean
Total hip and knee joint prostheses composed of ultra-high molecular weight polyethylene (UHMWPE) and metal or ceramics have been widely applied. Efficacious treatments such as crosslinking, addition of vitamin E and phospholipid coating to UHMWPE have reduced wear and extended the life of joint prostheses. However, wear problems have not yet been completely solved for cases involving severe conditions, where direct contact can occur in mixed or boundary lubrication. In contrast, extremely low
Prosthetic Hip dislocations remain one of the most common major complications after total hip arthroplasty procedures, which has led to much debate and refinement geared to the optimization of implant and bearing options, surgical approaches, and technique. The implementation of larger femoral heads has afforded patients a larger excursion distance and primary arc range motion before impingement, leading to lowered risk of hip dislocation. However, studies suggest that while the above remains true, the use of larger heads may contribute to increased volumetric wear, trunnion related corrosion, and an overall higher prevalence of loosening, pain, and patient dissatisfaction, which may require revision hip arthroplasty. More novel designs such as the dual mobility hip have been introduced into the United States to optimize stability and range of motion, while possibly lowering the
Introduction. Lipped liners have the potential to decrease the rate of revision for instability after total hip replacement since they increase the jumping distance in the direction of the lip. However, the elevated lip also may reduce the Range of Motion and may lead to early impingement of the femoral stem on the liner. It is unclear whether the use of a lipped liner has an impact on the level of lever-out moments or the contact stresses. Therefore, the aim of the current study was to calculate these values for lipped liners and compare these results to a conventional liner geometry. Materials and Methods. 3D Finite Element studies were conducted comparing a ceramic lipped liner prototype and a ceramic conventional liner both made from BIOLOX. ®. delta. The bearing diameter was 36 mm. To apply loading, a test taper made of titanium alloy was bonded to a femoral head, also made from BIOLOX. ®. delta. Titanium was modeled with a bilinear isotropic hardening law. For the bearing contact a coefficient of