Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 68 - 68
22 Nov 2024
Mannala G Labat B Ladam G Pascal T Walter N Szymski D Riool M Alt V Rupp M
Full Access

Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of incubation. Further, scanning electron microscopy (SEM) analyses were performed to study the effect of nisin on biofilm formation. Results. The larvae receiving the nisin-coated K-wires showed significantly higher survival rates compared to uncoated titanium K-wires, although not when compared to control-coated K-wires. A more than 1-log reduction in number of bacteria on the implant surface and in the surrounding tissue was observed in larvae receiving the nisin-coated K-wires, when compared to uncoated titanium K-wires SEM analysis showed reduced colonization of the bacteria nisin-coated K-wires compared to the controls. Conclusions. In conclusion, the antimicrobial nisin layer-by-layer based coating applied on titanium surfaces is able to prevent implant-related S. aureus biofilm infection in G. mellonella and is a promising antimicrobial strategy to prevent implant-related infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 110 - 110
10 Feb 2023
Kim K Wang A Coomarasamy C Foster M
Full Access

Distal interphalangeal joint (DIPJ) fusion using a k-wire has been the gold standard treatment for DIPJ arthritis. Recent studies have shown similar patient outcomes with the headless compression screws (HCS), however there has been no cost analysis to compare the two. Therefore, this study aims to 1) review the cost of DIPJ fusion between k-wire and HCS 2) compare functional outcome and patient satisfaction between the two groups. A retrospective review was performed over a nine-year period from 2012-2021 in Counties Manukau. Cost analysis was performed between patients who underwent DIPJ fusion with either HCS or k-wire. Costs included were surgical cost, repeat operations and follow-up clinic costs. The difference in pre-operative and post-operative functional and pain scores were also compared using the patient rate wrist/hand evaluation (PRWHE). Of the 85 eligible patients, 49 underwent fusion with k-wires and 36 had HCS. The overall cost was significantly lower in the HCS group which was 6554 New Zealand Dollars (NZD), whereas this was 10408 NZD in the k-wire group (p<0.0001). The adjusted relative risk of 1.3 indicate that the cost of k-wires is 1.3 times more than HCS (P=0.0053). The patients’ post-operative PRWHE pain (−22 vs −18, p<0.0001) and functional scores (−38 vs −36, p<0.0001) improved significantly in HCS group compared to the k-wire group. Literatures have shown similar DIPJ fusion outcomes between k-wire and HCS. K-wires often need to be removed post-operatively due to the metalware irritation. This leads to more surgical procedures and clinic follow-ups, which overall increases the cost of DIPJ fusion with k-wires. DIPJ fusion with HCS is a more cost-effective with a lower surgical and follow-up costs compared to the k-wiring technique. Patients with HCS also tend to have a significant improvement in post-operative pain and functional scores


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 135 - 135
1 Feb 2012
Kavouriadis V O'Gorman A Bain G Ashwood N
Full Access

Purpose. To elucidate whether there is an advantage in external fixation supplementation of K-wires in comparison to K-wires and plaster, in the treatment of distal radius fractures without metaphyseal comminution. Indications. Distal intraarticular radius fractures, Frykman VIII or VIII without metaphyseal comminution. Contraindications. Metaphyseal comminution, general medical contraindications for surgical intervention. Study design. Fifty-one patients were prospectively randomised in two groups: 24 patients were treated with K-wire and spanning external fixation supplementation, and 27 were treated with K-wires and plaster. Results. Patients were monitored following the operation with a minimum follow up of 1 year, and checked independently of surgeon for pain, satisfaction and range of motion. There was a statistically significant difference in favour of the external fixation patient group for pain (Visual Analogue Score, Ex-Fix group: mean 14.9, plaster group: mean 28.1, p<0.001) and satisfaction (Ex-Fix group: mean 89.7, plaster group: mean 76.3, p<0.001,). Although one would expect that range of motion would be reduced in the external fixation group, there were no statistically significant differences found in favour of plaster; on the contrary supination results were surprisingly in favour of the external fixation group (Ex-Fix group: mean 54.4, plaster group: mean 45.2, p<0.05). Conclusion. In this study, external fixation supplementation of K-wiring had statistically significant superior results in patient satisfaction score, pain score, and wrist supination in comparison to plaster augmentation of K-wiring


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 17 - 17
1 Dec 2022
Smit K L'Espérance C Livock H Tice A Carsen S Jarvis J Kerrigan A Seth S
Full Access

Olecranon fractures are common injuries representing roughly 5% of pediatric elbow fractures. The traditional surgical management is open reduction and internal fixation with a tension band technique where the pins are buried under the skin and tamped into the triceps. We have used a modification of this technique, where the pins have been left out of the skin to be removed in clinic. The purpose of the current study is to compare the outcomes of surgically treated olecranon fractures using a tension-band technique with buried k-wires (PINS IN) versus percutaneous k-wires (PINS OUT). We performed a retrospective chart review on all pediatric patients (18 years of age or less) with olecranon fractures that were surgically treated at a pediatric academic center between 2015 to present. Fractures were identified using ICD-10 codes and manually identified for those with an isolated olecranon fracture. Patients were excluded if they had polytrauma, metabolic bone disease, were treated non-op or if a non-tension band technique was used (ex: plate/screws). Patients were then divided into 2 groups, olecranon fractures using a tension-band technique with buried k-wires (PINS IN) and with percutaneous k-wires (PINS OUT). In the PINS OUT group, the k-wires were removed in clinic at the surgeon's discretion once adequate fracture healing was identified. The 2 groups were then compared for demographics, time to mobilization, fracture healing, complications and return to OR. A total of 35 patients met inclusion criteria. There were 28 patients in the PINS IN group with an average age of 12.8 years, of which 82% male and 43% fractured their right olecranon. There were 7 patients in the PINS OUT group with an average age of 12.6 years, of which 57% were male and 43% fractured their right olecranon. All patients in both groups were treated with open reduction internal fixation with a tension band-technique. In the PINS IN group, 64% were treated with 2.0 k-wires and various materials for the tension band (82% suture, 18% cerclage wire). In the PINS OUT group, 71% were treated with 2.0 k-wires and all were treated with sutures for the tension band. The PINS IN group were faster to mobilize (3.4 weeks (range 2-5 weeks) vs 5 weeks (range 4-7 weeks) p=0.01) but had a significantly higher complications rate compared to the PINS OUT group (6 vs 0, p =0.0001) and a significantly higher return to OR (71% vs 0%, p=0.0001), mainly for hardware irritation or limited range of motion. All fractures healed in both groups within 7 weeks. Pediatric olecranon fractures treated with a suture tension-band technique and k-wires left percutaneously is a safe and alternative technique compared to the traditional buried k-wires technique. The PINS OUT technique, although needing longer immobilization, could lead to less complications and decreased return to the OR due to irritation and limited ROM


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 6 - 6
1 Jun 2023
Watts D Bye D Nelson D Chase H Nunney I Marshall T Sanghrajka A
Full Access

Introduction. Derotation osteotomies are commonly performed in paediatric orthopaedic and limb reconstruction practice. The purpose of this study was to determine whether the use of a digital inclinometer significantly improves the accuracy in attaining the desired correction. Materials & Methods. We designed an electronic survey regarding derotation femoral osteotomy (DFO) including methods of intra-operative angular correction assessment and acceptable margins of error for correction. This was distributed to 28 paediatric orthopaedic surgeons in our region. A DFO model was created, using an anatomic sawbone with foam covering. 8 orthopaedic surgeons each performed two 30-degree DFOs, one using K-wires and visual estimation (VE), and the other using a Digital Inclinometer (DI). Two radiologists reported pre and post procedure rotational profile CT scans to assess the achieved rotational correction. Results. There was a 68% response rate to the survey. The most popular methods of estimating intra-operative correction were reported to be K-wires and rotation marks on bone. The majority of respondents reported that a 6–10 degree margin of error was acceptable for a 30-degree derotation. This was therefore set as the upper limit for acceptable error margin in the simulation study. The mean error in rotation in the VE group of simulated DFO was 19.7 degrees, with error>5 degrees and error>10 degrees in 7 (88%) and 6 (75%) cases respectively. Mean error in DI group was 3.1 degrees, with error>5 degrees in 1 case (13%). Conclusions. Our results show that the compared to conventional techniques, the use of an inclinometer significantly improves the accuracy of femoral de-rotation and significantly reduces the incidence of unacceptable errors in correction. We would suggest that digital inclinometers be used to assess intra-operative correction during derotation osteotomies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 67 - 67
22 Nov 2024
Youf R Ruth S Mannala G Zhao Y Alt V Riool M
Full Access

Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment. Method. In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, in vitro rifampicin susceptibility assays were performed (according to EUCAST). Results. The first model indicate that in vitro biofilm maturation affects the bacterial pathogenicity in the host, depending on the S. aureus strain used. Furthermore, the more the biofilm is matured, the more the rifampicin treatment efficiency is compromised. The second model shows that, despite the fast in vivo biofilm formation in the host, the number of bacteria, either attached to the surface of the K-wire surface or in surrounding tissue of the larvae, was not increased over time. Conclusions. Altogether, these results allow the establishment of biofilm models using G. mellonella larvae in order to understand the impact of biofilm maturation on both the bacterial pathogenicity and the efficiency of antibiofilm treatments


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 88 - 88
1 Dec 2019
Luca MD Materazzi A Klatt A Bottai D Tavanti A Trampuz A
Full Access

Aim. To investigate the ability of the bacteriophage Sb-1 to treat and prevent implant-associated infections due to methicillin-resistant Staphylococcus aureus (MRSA) in Galleria mellonella larvae implanted with a K-wire. Method. The stability of Sb-1 in G. mellonella larvae was investigated by injecting a phage titer of 10. 8. PFU and evaluating the presence of Sb-1 in hemolymph at different time points. For infection experiments, sterile stainless-steel K-wires (4 mm, 0.6 mm Ø) were implanted into larvae. Two days after implant, larvae were infected with MRSA ATCC 43300 (1×10. 5. CFU) and incubated at 37°C for further 2 days. Implanted-infected larvae were thus treated for 2 days (3×/day) with 10µL of: i) PBS; ii) Sb-1 (10. 7. PFU); iii) Daptomycin (4mg/kg), iv) PBS (24h)/Daptomycin(24h); v) Sb-1(24h)/Daptomycin(24h). To evaluate the prophylactic efficacy of Sb-1, an experiment based on phages or vancomycin (10mg/kg) administration, followed by MRSA infection of implanted larvae was performed. Both two days post-infection and post-treatment, K-wires were explanted, and the material was sonicated and plated for MRSA colony counting. Results. Sb-1 titer resulted stable in hemolymph of G. mellonella larvae for 6–8 h post-administration. Two days post-infection of K-wire implanted larvae, ≈5×10. 7. CFU/ml MRSA were found on the material. K-wires from larvae treated with Sb-1 or Daptomycin showed a MRSA CFU/ml reduction of ≈1 log compared to the CFU/ml values of the untreated control. The staggered administration Sb-1/Daptomycin determined higher CFU reduction (≈ 3.5 log). Prophylaxis with Sb-1 prevented MRSA infection of 7out of 10 larvae similarly to vancomycin. Conclusions. G. mellonella larvae implanted with K-wires are a suitable model to test antibiofilm formulations in vivo. Sb-1 phage is able to prevent implant-associated infection due to MRSA in larvae. Sequential combination of Sb-1 and Daptomycin strongly reduces the MRSA load on implanted K-wires


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 76 - 76
1 Dec 2021
Mannala G Rupp M Alagboso F Docheva D Alt V
Full Access

Aim. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules involve in biofilm. Due to ethical restrictions, the use mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections. This model organism is easy to handle, cheap and ethical restriction free and could be used for the high through put screening of antimicrobial compounds to treat biofilm. To promote the use of this model in basic research we aimed to validate this based on the typical biofilm features such as less susceptible to the antibiotics, complexity of the biofilm structure and gene expression profile of biofilms. Method. G. mellonella larvae are maintained at 30oC on artificial diet in an incubator. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. After sterilization with 100% alcohol, these K-wires were pre-incubated in S. aureus bacterial suspension (5×10. 6. CFU/ml) for 30 min, washed in PBS and implanted inside the larva after with help of scalpel. The larvae were incubated at 37. o. C for two day for the survival analysis. To analyze the less susceptibility of the biofilms towards antibiotics, the larvae were treated with gentamicin and compared survival with planktonic infection in G. mellonella. To reveal the complex structure of biofilm, the implants were removed and processed for the MALDI analysis. Whole genome-based transcriptome of biofilm was performed to explore the changes in transcriptional landscapes. Results. The results are very promising to validate the use of G. mellonella as in vivo model to study the biofilm formation on implanted materials. The gentamicin treatment could rescue the larvae from the planktonic infection, but not from the biofilm infection on the implants. Further, the MALDI analysis could reveal the complex structure and components of S. aureus biofilm formed on the implant inside the larvae. Finally, the transcriptomic analysis revealed the gene expression changes that can be compared to normal biofilm expression profile. Conclusions. Further, comparison of these results with other in vivo models such as rat and mouse as well as acute and chronic clinical samples from patients with implant-associated bone infections could validate and relevant use of this model to study S. aureus biofilm infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 76 - 76
24 Nov 2023
Hesselvig AB Bjarnsholt T Jørgensen A Gottlieb H
Full Access

Aim. To evaluate whether sonication of implant material and subsequent culturing add clinical relevance to culturing of tissue biopsies for improved antibiotic treatment in treatment of bone and joint infection. Method. A retrospective examination of patients’ charts and microbiological analyses in patients who had explanted material (plates, screws, k-wires and prostheses) send for sonication between December 2020 and April 2022. Results. 77/143 (54 %) patients had complete agreement between the cultures from tissue biopsies and sonication fluid. 66/143 (46 %) patients had partial or no agreement between the cultures from tissue biopsies and sonication fluid. Of the 66 patients, 31 (47 %) had a culture positive sonication fluid and tissue biopsies that were positive with one or more bacterial isolates. 26/66 (39 %) patients had a culture positive sonication fluid and tissue biopsies that were negative. 9/66 (14 %) patients had negative sonication fluid and positive tissue biopsies. Of the 26 patients with culture positive sonication fluid and culture negative tissue biopsies, virulent bacteria were found in 5 (19 %) patients, making the diagnosis and treatment of infection straight forward. The remaining 21 (81 %) patients had C. acnes, S. epidermidis and CoNS in the sonication fluid, which made the diagnosis less evident but none the less gave the clinician a relevant treatment option. Conclusion. In this study a high concordance was found between cultures from tissue biopsies and sonication fluid. Additionally, in a small group of patients with culture negative tissue biopsy, the culture of sonication fluid was essential to the identification infections agent. This indicates that culture of sonication fluid is an important diagnostic tool in bone and joint infection, especially in the absence of positive tissue cultures


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 85 - 85
1 Oct 2022
Mannala G Rupp M Alt V
Full Access

Aim. Fungal periprosthetic joint infections are difficult to treat and often associated with a limited outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules for bacteria. However, in vivo modeling of biofilm-associated fungi models are very rare. Furthermore, due to ethical restrictions, mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections with bacteria. This model organism was not used for fungi biofilm infection yet. Thus, we aimed to establish G. mellonella as in vivo model to study fungal implant infections using Candida albicans as model organism and to test anti-fungal medication. Method. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. For the infection process, implants were pre-incubated in specified fungal growth culture Candida albicans at 1×10. 7. CFU/ml for 30 min at 150 rpm shaking conditions. Later, these implants were washed with 10ml PBS and implanted in the larvae as mentioned. To analyze the susceptibility of the implant-associated fungal infections towards anti fungal compounds, the larvae were treated with amphotericin B, fluconazole and voriconazole after 24h of implantation. The effect of anti-fungal compounds was measured in terms of survival observation for 5 days and fungal load in larvae on 2. nd. day. To reveal the fungal biofilm formation on implant, the implants were removed on day 3 and processed for SEM analysis. Results. Pre-incubated K-wire caused the Candida infection and observed the death of the larvae. The treatment with antifungal compounds recovered the larvae from the implant-infection, except in case of Voriconazole. However, the recovery with treatment of anti fungal compounds was not effective as the larvae with planktonic infection, which highlights typical biofilm phenotype. Further, the treatment with anti-fungal compounds with Amphotericin B and Fluconazole reduced the fungal load in larvae tissue. The SEM analysis revealed the formation fungal biofilm with hyphae and spores associated with larvae tissue on implant surface. Conclusions. The results from survival analysis, antifungal treatment and SEM analysis are very promising to use of G. mellonella as in vivo model to study fungal infections on implanted materials. Our study highlights the use of G. mellonella larvae as alternative in vivo model to study implant-associated fungal infections that reduces the use of the higher mammals


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 49 - 49
1 Jun 2018
Engh C
Full Access

Greater trochanter fractures after total hip replacement have been reported in up to 5% of cases. The outcomes are generally poor. Treatment options include non-operative care or surgical treatment with cerclage wires or a claw plate. We present a simple tension band technique for acute fractures with a single bony fracture fragment. We have not used the technique for chronic or comminuted fractures. Technique: 2.5mm k-wires are passed through the fragment and anterior and posterior to the femoral implant. Eighteen-gauge wire is passed through a drill hole in the femur distal to the fracture and around the k-wires in a figure eight. The patient is kept 50% weightbearing with no active abduction for 4 weeks. In four cases the fracture has gone on to healing. Patients have had a negative Trendelenburg sign without peritrochanteric pain. The tension band technique is familiar to surgeons and has been reliable


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 94 - 94
1 Sep 2012
Zafar MS Gadgil A
Full Access

Symptomatic flexion deformity of proximal interpahalangeal joint (PIPJ) is one of the most common foot deformities and usually treated with arthrodesis. In general, percutaneous K-wires are used to stabilize the joint after excision of cartilage. K-wires projecting out of the toe need special care and can occasionally be dislodged accidentally. Furthermore issues such as cellulitis, pin tract infections, rarely osteomyelitis and need for removal make alternative fixation methods desirable. Smart toe is an intra-osseous titanium memory implant, which is stored frozen. It expands on insertion and does not require removal. 18 consecutive K-wire PIPJ arthrodesis were compared with 18 Smart toe PIP fusions with a mean follow up of 6 months. Post operative forefoot scores and complications were documented. Patient satisfaction was higher and complications were lower with Smart toe fusions than with K-wire arthrodesis. Fusion of PIP joints with smart toe is an effective and safer alternative to using K-wires. Although more expensive, higher patient satisfaction and lower complication rate may offset the extra cost of the implant


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 77 - 77
1 Dec 2017
Mak MC Chui EC Tse W Ho P
Full Access

Scaphoid non-union results the typical humpback deformity, pronation of the distal fragment, and a bone defect in the non-union site with shortening. Bone grafting, whether open or arthroscopic, relies on fluoroscopic and direct visual assessment of reduction. However, because of the bone defect and irregular geometry, it is difficult to determine the precise width of the bone gap and restore the original bone length, and to correct interfragmentary rotation. Correction of alignment can be performed by computer-assisted planning and intraoperative guidance. The use of computer navigation in guiding reduction in scaphoid non-unions and displaced fractures has not been reported. Objective. We propose a method of anatomical reconstruction in scaphoid non-union by computer-assisted preoperative planning combined with intraoperative computer navigation. This could be done in conjunction with a minimally invasive, arthroscopic bone grafting technique. Methods. A model consisting of a scaphoid bone with a simulated fracture, a forearm model, and an attached patient tracker was used. 2 titanium K-wires were inserted into the distal scaphoid fragment. 3D images were acquired and matched to those from a computed tomography (CT) scan. In an image processing software, the non-union was reduced and pin tracts were planned into the proximal fragment. The K-wires were driven into the proximal fragment under computer navigation. Reduction was assessed by direct measurement. These steps were repeated in a cadaveric upper limb. A scaphoid fracture was created and a patient tracker was inserted into the radial shaft. A post-fixation CT was obtained to assess reduction. Results and Discussion. In both models, satisfactory alignment was obtained. There were minimal displacement and articular stepping, and scaphoid length was restored with less than 1mm discrepancy. This study demonstrated that an accurate reduction of the scaphoid in non-unions and displaced fractures can be accurately performed using computed navigation and computer-assisted planning. It is the first report on the use of computer navigation in correction of alignment in the wrist


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 68 - 68
1 Feb 2012
Alkhayer A Ahmed A Dehne K Bishay M
Full Access

The use of percutaneous Kirschner wires [K-wires] and plaster is a popular method of treatment for displaced distal radius fracture. However, multi-database electronic literature review reveals unsurprisingly different views regarding their use. From August 2002 till June 2004, 280 distal radial fractures were admitted to our orthopaedic department. They were recorded prospectively in the departmental trauma admissions database. We studied the 87 cases treated with the K-wires and plaster technique. They were classified according to the AO classification system. The mean patient age was 53 [5-88] years. The mean delay before surgery was 7 [0-24] days. We studied the complications reported by the attending orthopaedic surgical team. 48 out of 87 patients [55.1%] were reported to have complications. We analysed the displacement and the pin tract infection, as they were the main reported complications. 28 out of 87 patients [32%] had displacement [9 had further surgery to correct the displacement, 19 did not have any further surgery as the displacement was accepted]. 11 out of 87 patients [12.6%] had pin tract infection [7 needed early removals of the K-wires and systematic treatment]. Further analysis showed no statistically significant relation between the complications rate and the age of the patients, the delay before surgery or the type of the fractures. We demonstrate a considerable high displacement and infection rate with the use of K-wires and plaster technique for fixation of distal fracture irrespective of the age of the patients, the delay before surgery or the fracture classification. There are other methods for fixation of the distal radial fracture with proven less morbidity which should be considered


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 81 - 81
1 Feb 2012
Lakshmanan P Ahmed S Dixit V Reed M Sher J
Full Access

Background. Percutaneous K-wire fixation is a well-recognised and often performed method of stabilisation for distal radius fractures. However, there is paucity in the literature regarding the infection rate after percutaneous K-wire fixation for distal radius fractures. Aims. To analyse the rate and severity of infection after percutaneous K-wire fixation for distal radius fractures. Material and methods. Between October 2004 and June 2005, 43 patients with closed distal radius fractures had percutaneous K-wire fixation. The wires were left outside the skin in all the cases for easy removal at the end of six weeks at the clinic. They were followed up in the clinic at 1, 2, 4, and 6 weeks. The pin tracts were examined at 2 weeks and six weeks, or if needed earlier. The severity of pin tract infection was graded using modified Oppenheim classification. Results. Out of 43 patients, the male to female ratio was 13:30. The mean age was 49.1 years (range 5-86 years). There were nine cases of pin tract infection, out of which three were grade I, three were grade II, two were grade III, and one was grade IV. In three cases the K-wires had to be removed earlier. Discussion. The infection rate after percutaneous K-wire fixation for distal radius fractures is high (20.9%), which is equivalent to the infection rate quoted in the literature for hybrid external fixators. As the K-wires are used to fix the fractures, the expected implant infection rate in Trauma and Orthopaedics which is less than 1% should be aimed for. However this is not the case. Hence, burying the K-wires under the skin may be an alternative to reduce the infection rate after percutaneous K-wire fixation of distal radius


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 73 - 73
1 Mar 2013
Rollinson P Wicks L Kemp M
Full Access

Introduction. A recent retrospective study of distal femoral physeal fractures (DFPFs) suggested closed manipulation alone has a high incidence of re-displacement, malunion or physeal bar formation. The paper concluded that all displaced DFPFs require internal fixation, and breaching the physis with k-wires is safe. We agree that hyper-extension/flexion injuries need stabilisation using k-wires but, in our experience, purely valgus/varus deformities can be successfully managed by manipulation under anaesthesia (MUA) and a moulded cylinder cast. Method. We prospectively observed DFPFs presenting over 12 months. Departmental policy is to treat varus/valgus deformities by MUA, with cylinder casting providing 3 point fixation. Hyper-extension/flexion injuries are reduced on a traction table. 2mm cross k-wiring is performed, leaving the wires under the skin, and a cylinder plaster applied. A post-operative CT scanogram accurately assesses limb alignment. Patients are mobilised immediately using crutches and weight-bearing as pain allows. Plaster and k-wires are removed after 4–5 weeks. Scanogram is then repeated, and again at 6 months and 1 year. Results. 17 cases presented over 1 year. 16 were male, with a median age of 15. 13 were injured playing soccer, 1 in a motor vehicle accident and 3 by other mechanisms. Internal fixation supplemented reduction in 13 cases. 1 patient required repeat MUA and k-wiring when post-operative scanogram identified significant varus mal-alignment. In all cases, cylinder casting was unproblematic and range of movement quickly recovered after plaster/wire removal. To date none have developed significant malunion or growth arrest requiring intervention. Conclusion. DFPFs are uncommon, almost always occurring in teenage males. Accurate reduction and stabilisation is vital to restore and maintain a correct mechanical axis. MUA and cylinder casting is adequate in appropriate cases. Early imaging with CT scanogram can detect mal-alignment. Growth arrest is unusual and unlikely to be significant in most patients, who are approaching skeletal maturity. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 60 - 60
1 Apr 2017
Paprosky W
Full Access

Acetabular distraction for the treatment of chronic pelvic discontinuity was first described by Sporer and Paprosky. The authors advocate the posterolateral approach for exposure of the posterior ilium and posterior column, The patient is secured in the lateral decubitus position. Following a systematic approach to surgical exposure, acetabular component removal should be performed with “cup out” osteotomes resulting in minimal iatrogenic bone loss. Following component removal and confirmation of a chronic discontinuity determine the integrity of the remaining AS and PI columns. If porous metal augments are needed for primary stabilization, the augments are placed prior to cup insertion for reconstruction of the AS and/or PI column. Next, Kirschner (K) wires (size 2.4) are placed in the remaining AS and PI bone so that the distractor can be secured in an extra-acetabular position. The distractor is placed over the K-wires allowing for lateral or peripheral acetabular distraction and resultant medial or central compression at the discontinuity. With the distractor in an extra-acetabular position, hemispherical reamers are used until an interference fit is achieved between the native or augmented AS and PI columns. The acetabulum should be reamed on reverse to avoid excessive removal of host bone. When the proper acetabular component size has been reached, the reamer will disengage from the reamer handle and the reamer can be used as a surrogate acetabular shell; when the acetabulum is maximally distracted, the entire construct will move as a unit. Crushed cancellous allograft is used to bone graft the discontinuity and reamed on reverse. A revision tantalum cup is inserted with continual distraction using the distractor. Cement is applied to the augment surface prior to cup insertion in order to utilise the construct. Following cup insertion, the distractor and K-wires are removed. Adjuvant screw fixation is performed, with a minimum of 4 screws, and placing at least one of the screws inferiorly for fixation in the superior public ramus or ischium to prevent abduction failure of the construct. In the setting of severely osteoporotic bone and inadequate screw fixation, an augment placed posterosuperiorly can be used for supplemental fixation. This augment is also unitised to the cup with cement at the same time as the liner is cemented into the cup. Bone wax is placed over the exposed tantalum surface of the posterosuperior augment to minimise soft-tissue ingrowth into the augment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 18 - 18
1 Aug 2020
Goetz TJ Mwaturura T Li A
Full Access

Previous studies describing drill trajectory for single incision distal biceps tendon repair suggest aiming ulnar and distal (Lo et al). This suggests that the starting point of the drill would be anterior and radial to the anatomic insertion of the distal biceps tendon. Restoration of the anatomic footprint may be important for restoration of normal strength, especially as full supination is approached. To determine the safest drill trajectory for preventing injury to the posterior interosseous nerve (PIN) when repairing the distal biceps tendon to the ANATOMIC footprint through a single-incision anterior approach utilising cortical button fixation. Through an anterior approach in ten cadaveric specimens, three drill holes were made in the radial tuberosity from the centre of the anatomic footprint with the forearm fully supinated. Holes were made in a 30º distal, transverse and 30º proximal direction. Each hole was made by angling the trajectory from an anterior to posterior and ulnar to radial direction leaving adequate bone on the ulnar side to accommodate an eight-millimetre tunnel. Proximity of each drill trajectory to the PIN was determined by making a second incision on the dorsum of the proximal forearm. A K-wire was passed through each hole and the distance between the PIN and K-wire measured for each trajectory. The PIN was closest to the trajectory K-wires drilled 30° distally (mean distance 5.4 mm), contacting the K-wire in three cases. The transverse drill trajectory resulted in contact with the PIN in one case (mean distance 7.6 mm). The proximal drill trajectory appeared safest with no PIN contact (mean distance 13.3 mm). This was statistically significant with a Friedman statistic of 15.05 (p value of 0.00054). When drilling from the anatomic footprint of the distal biceps tendon the PIN is furthest from a drill trajectory aimed proximally. The drill is aimed radially to minimise blowing out the ulnar cortex of the radius. For any reader inquiries, please contact . vansurgdoc@gmail.com


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 23 - 23
1 Jul 2020
Liang T Luo Z
Full Access

The detailed biomechanical mechanism of annulus fibrosus under abnormal loading is still ambiguous, especially at the micro and nano scales. This study aims to characterize the alterations of modulus at the nano scale of individual collagen fibrils in annulus fibrosus after in-situ immobilization, and the corresponding micro-biomechanics of annulus fibrosus. An immobilization model was used on the rat tail with an external fixation device. Twenty one fully grown 12-week-old male Sprague-Dawley rats were used in this study. The rats were assigned to one of three groups randomly. One group was selected to be the baseline control group with intact intervertebral discs (n=7). In the other two groups, the vertebrae were immobilized with an external fixation device that fixed four caudal vertebrae (C7-C10) for 4 and 8 weeks, respectively. Four K-wires were fixed in parallel using two aluminum alloy cuboids which do not compress or stretch the target discs. The immobilized discs were harvested and then stained with hematoxylin/eosin, scanned using atomic force microscopy to obtain the modulus at both nano and micro scales, and analyzed the gene expression with real-time quantitative polymerase chain reaction. Significance of differences between the study groups was obtained using a two-way analysis of variance (ANOVA) with Fisher's Partial Least-Squares Difference (PLSD) to analyze the combined influence of immobilization time and scanning region. Statistical significance was set at P≤0.05. Compared to the control group, the inner layer of annulus fibrosus presented significant disorder and hyperplasia after immobilization for 8 weeks, but not in the 4 week group. The fibrils in inner layer showed an alteration in elastic modulus from 91.38±20.19MPa in the intact annulus fibrosus to 110.64±15.58MPa (P<0.001) at the nano scale after immobilization for 8 weeks, while the corresponding modulus at the micro scale also underwent a change from 0.33±0.04MPa to 0.47±0.04MPa (P<0.001). The upregulation of collagen II from 1±0.03 in control to 1.22±0.03 in 8w group (P = 0.003) was induced after immobilization, while other genes expression showed no significant alteration after immobilization for both 4 and 8 weeks compared to the control group (P>0.05). The biomechanical properties at both nano and micro scales altered in different degrees between inner and outer layers in annulus fibrosus after immobilization for different times. Meanwhile, the fibril arrangement disorder and the upregulation of collagen II in annulus fibrosus were observed using hematoxylin/eosin staining and real-time RT-PCR, respectively. These results indicate that immobilization not only influenced the individual collagen fibril at the nano scale, but also suggested alterations of micro-biomechanics and cell response. This work provides a better understanding of IVD degeneration after immobilization and benefits to the clinical treatment related to disc immobilization


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 71 - 71
1 Aug 2020
Meldrum A Schneider P Harrison T Kwong C Archibold K
Full Access

Olecranon Osteotomy is a common approach used in the management of intraarticular distal humerus fractures. Significant complication rates have been associated with this procedure, including non-union rates of 0–13% and implant removal rates between 12–86%. This study is a multicentre retrospective study involving the largest cohort of olecranon osteotomies in the literature, examining implant fixation types, removal rates and associated complications. Patients were identified between 2007 and 2017 (minimum one year follow-up) via Canadian Classification of Health Interventions (CCI) coding and ICD9/10 codes by our health region's data information service. CCI intervention codes were used to identify patients who underwent surgery for their fracture with an olecranon osteotomy. Reasons for implant removal were identified from a chart review. Our primary outcome was implant removal rates. Categorical data was assessed using Chi square test and Fischer's Exact test. Ninety-nine patients were identified to have undergone an olecranon osteotomy for treatment of a distal humerus fracture. Twenty patients had their osteotomy fixed with a plate and screws and 67 patients were fixed with a tension band wire. Eleven patients underwent “screw fixation”, consisting of a single screw with or without the addition of a wire. One patient had placement of a cable-pin system. Of patients who underwent olecranon osteotomy fixation, 34.3% required implant removal. Removal rates were: 28/67 for TBW (41.8%), 6/20 plates (30%), 0/1 cable-pin and 0/11 for osteotomies fixed with screw fixation. Screw fixation was removed less frequently than TBW p<.006. TBW were more commonly removed than all other fixation types p<.043. Screws were less commonly removed than all other fixation types p<.015. TBW were more likely to be removed for implant irritation than plates, p<.007, and all other implants p<.007. The average time to removal was 361 days (80–1503 days). A second surgeon was the surgeon responsible for the removal in 10/34 cases (29%). TBWs requiring removal were further off the olecranon tip than those not removed p=.006. TBWs were associated with an OR of 3.29 (CI 1.10–9.84) for implant removal if implanted further than 1mm off bone. Nonunion of the osteotomy occurred in three out of 99 patients (3%). K-wires through the anterior ulnar cortex did not result in decreased need for TBW removal. There was no relation between plate prominence and the need for implant removal. There was no association between age and implant removal. The implant removal rate was 34% overall. Single screw fixation was the best option for osteotomy fixation, as 0/11 required hardware removal, which was statistically less frequent than TBW at 28/67. Screw fixation was removed less frequently than TBW and screw fixation was less commonly removed than all other fixation types. Only 6/20 (30%) plates required removal, which is lower than previously published rates. Overall, TBW were more commonly removed than all other fixation types and this was also the case if hardware irritation was used as the indication for removal. Nonunion rates of olecranon osteotomy were 3%