The peri-prosthetic tissue response to wear debris
is complex and influenced by various factors including the size, area
and number of
Objectives. This study aimed to characterise and qualitatively grade the severity of the corrosion
Deep infection occurs in 2–4% of lower limb arthroplasty resulting in increasing cost, co-morbidity and challenging revision arthroplasty surgery. Identifying the potential sources of infection helps reduce infection rates. The aim of our study is to identify the impact and potential for contamination of our hands and gowns whilst scrubbing using SSHS. A colony-forming unit (CFU) is a pathogenic
One concern about the fixation of HA-coated implants is the possible disintegration of the surface, with the migration of HA granules into the joint space, producing third-body wear. We report a study of six revisions of HA-coated polyethylene RM cups at 9 to 14 years after successful primary arthroplasty. In all six hips, we found HA granules embedded in the articulating surface of the polyethylene, with abrasive wear of the cup and the metal femoral head. The cup had loosened in four hips and three showed severe osteolysis of the proximal femur. Third-body wear due to HA
Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and
Ceramic bearing fracture is a rare complication following implantation using modern day ceramic bearing materials. Revision bearing options in such cases is debated, with the choice between ceramic-on-ceramic and ceramic-on-polyethylene bearings. Revision to a hard on soft bearing raises concerns about potential catastrophic wear secondary to a third-body reaction caused by the fractured ceramic
In total hip arthroplasty (THA), cementless cup without screw holes has the putative benefits of maximizing host bone contact and reducing osteolysis by eliminating channels to backside wear
Metallic contacts in hip replacements are susceptible to wear and corrosion processes which lead to the release of
Wear induces osteolysis leading to periprosthetic bone loss and TJA loosening. Inflammatory immune cells can form an aggressive interface membrane activating osteoclasts. The current study shows the effect of metal
Background. There has been a trend in the evolution of total hip arthroplasty towards increased modularity, with this increase in modularity come some potentially harmful consequences. Modularity at the neck shaft junction has been linked to corrosion, adverse reaction to metal debris and pseudotumor formation. The aim of this retrieval study is to assess whether the surface integrity of the polyethylene (PE) liner is affected by metal wear debris in a single implant design series of THA revised for trunnionosis. Method. A retrieval analysis of thirty dual-taper modular neck hip prostheses was performed, the mean time from implantation to revision was 2.7 years (1.02–6.2). The PE liners were analysed using a scanning electron microscope with an energy dispersive spectrometer to assess for metal
Introduction. Three-dimensional (3D) printing of porous titanium implants marks a revolution in orthopaedics, promising enhanced bony fixation whilst maintaining design equivalence with conventionally manufactured components. No retrieval study has investigated differences between implants manufactured using these two methods. Our study was the first to compare these two groups using novel non-destructive methods. Materials and methods. We investigated 16 retrieved acetabular cups divided into ‘3D printed’ (n = 6; Delta TT) and ‘conventional’ (n = 10; Pinnacle Porocoat). The groups were matched for age, time to revision, size and gender (Table 1). Reasons for revision included unexplained pain, aseptic loosening, infection and ARMD. Visual inspection was performed to evaluate tissue attachment. Micro-CT was used to assess clinically relevant morphometric features of the porous structure, such as porosity, depth of the porous layer, pore size and strut thickness. Scanning electron microscopy (SEM) was applied to evaluate the surface morphology. Results. Significant differences (p = 0.0002) were found for all morphometric parameters (Table 2). Microscopic analysis revealed uniform beads over the backside of conventional implants, due to the manufacturing technique (Figure 1a). Conversely, beads of random size were found on 3D printed implants, representing a by-product of the manufacturing process, where some starting powder
Aims. Early evidence has emerged suggesting that ceramic-on-ceramic
articulations induce a different tissue reaction to ceramic-on-polyethylene
and metal-on-metal bearings. Therefore, the aim of this study was
to investigate the tissue reaction and cellular response to ceramic
total hip arthroplasty (THA) materials in vitro,
as well as the tissue reaction in capsular tissue after revision
surgery of ceramic-on-ceramic THAs. Patients and Methods. We investigated tissue collected at revision surgery from nine
ceramic-on-ceramic articulations. we compared our findings with
tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene
THAs, and four primary osteoarthritis synovial membranes. The latter
were analyzed to assess the amount of tissue fibrosis that might
have been present at the time of implantation to enable evaluation,
in relation to implantation time, of any subsequent response in
the tissues. Results. There was a significant increase in tissue fibrosis with implantation
time for all implant types tested. Interestingly, the tissue fibrosis
in ceramic-on-ceramic THAs was significantly increased compared
with metal-on-metal and ceramic-on-polyethylene. Additionally, we
found ceramic wear
Introduction. One unpredictable clinical risk with THA may be impingement of a metal cup rim against a metal femoral-neck, with concomitant release of metal
Objectives. Metal-on-metal (MoM) hip resurfacing was introduced into clinical
practice because it was perceived to be a better alternative to
conventional total hip replacement for young and active patients.
However, an increasing number of reports of complications have arisen
focusing on design and orientation of the components, the generation
of metallic wear
Background. Some reports have suggested that debris generated from the head neck taper junction is more destructive than equivalent doses from metal bearing surfaces. Methods. Part 1. We examined the relationship between the source (taper/bearing) and volume of metal debris on Cr and Co concentrations in corresponding blood and hip synovial fluid samples and the observed agglomerated
Aims. We wished to investigate the influence of metal debris exposure
on the subsequent immune response and resulting soft-tissue injury
following metal-on-metal (MoM) hip arthroplasty. Some reports have
suggested that debris generated from the head-neck taper junction
is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal
debris on chromium (Cr) and cobalt (Co) concentrations in corresponding
blood and hip synovial fluid samples and the observed agglomerated
particle sizes in excised tissues using multiple regression analysis
of prospectively collected data. A total of 199 explanted MoM hips
(177 patients; 132 hips female) were analysed to determine rates
of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution
of metal debris from the taper junction was associated with smaller
aggregated
This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.Aims
Methods
We describe three prostheses with cemented titanium-alloy stems and Al. 2. O. 3. ceramic femoral heads which had to be revised after a mean period of implantation of 78 months. In each case, the neck of the prosthesis had been so severely worn that the profile was elliptical rather than circular. There was severe metallosis of the periprosthetic tissues. Metal
This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection. A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.Aims
Methods
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods