Aims
The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support.
Methods
The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared.
This study examined the role of vitamin D as a factor accounting for fatty degeneration and muscle function in the rotator cuff. There were 366 patients with disorders of the shoulder. A total of 228 patients had a full-thickness tear (group 1) and 138 patients had no tear (group 2). All underwent magnetic resonance arthrography and an isokinetic muscle