Advertisement for orthosearch.org.uk
Results 1 - 20 of 304
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 82 - 82
1 Dec 2022
Hitchon S Milner J Holdsworth D Willing R
Full Access

Revision surgeries for orthopaedic infections are done in two stages – one surgery to implant an antibiotic spacer to clear the infection and another to install a permanent implant. A permanent porous implant, that can be loaded with antibiotics and allow for single-stage revision surgery, will benefit patients and save healthcare resources. Gyroid structures can be constructed with high porosity, without stress concentrations that can develop in other period porous structures [1] [2]. The purpose of this research is to compare the resulting bone and prosthesis stress distributions when porous versus solid stems are implanted into three proximal humeri with varying bone densities, using finite element models (FEM). Porous humeral stems were constructed in a gyroid structure at porosities of 60%, 70%, and 80% using computer-aided design (CAD) software. These CAD models were analyzed using FEM (Abaqus) to look at the stress distributions within the proximal humerus and the stem components with loads and boundary conditions representing the arm actively maintained at 120˚ of flexion. The stem was assumed to be made of titanium (Ti6Al4V). Three different bone densities were investigated, representing a healthy, an osteopenic, and an osteoporotic humerus, with an average bone shape created using a statistical shape and density model (SSDM) based on 75 cadaveric shoulders (57 males and 18 females, 73 12 years) [3]. The Young's moduli (E) of the cortical and trabecular bones were defined on an element-by-element basis, with a minimum allowable E of 15 MPa. The Von Mises stress distributions in the bone and the stems were compared between different stem scenarios for each bone density model. A preliminary analysis shows an increase in stress values at the proximal-lateral region of the humerus when using the porous stems compared to the solid stem, which becomes more prominent as bone density decreases. With the exception of a few mesh dependent singularities, all three porous stems show stress distributions below the fatigue strength of Ti-6Al-4V (410 MPa) for this loading scenario when employed in the osteopenic and osteoporotic humeri [4]. The 80% porosity stem had a single strut exceeding the fatigue strength when employed in the healthy bone. The results of this study indicate that the more compliant nature of the porous stem geometries may allow for better load transmission through the proximal humeral bone, better matching the stress distributions of the intact bone and possibly mitigating stress-shielding effects. Importantly, this study also indicates that these porous stems have adequate strength for long-term use, as none were predicted to have catastrophic failure under the physiologically-relevant loads. Although these results are limited to a single boney geometry, it is based on the average shape of 75 shoulders and different bone densities are considered. Future work could leverage the shape model for probabilistic models that could explore the effect of stem porosity across a broader population. The development of these models are instrumental in determining if these structures are a viable solution to combatting orthopaedic implant infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 19 - 19
23 Feb 2023
Sandow M Cheng Z
Full Access

This paper presents an ongoing review of the use of a wedge-shaped porous metal augments in the shoulder to address glenoid retroversion as part of anatomical total shoulder arthroplasty (aTSA). Seventy-five shoulders in 66 patients (23 women and 43 men, aged 42 to 85 years) with Walch grade B2 or C glenoids underwent porous metal glenoid augment (PMGA) insertion as part of aTSA. Patients received either a 15º or 30º PMGA wedge (secured by screws to the native glenoid) to correct excessive glenoid retroversion before a standard glenoid component was implanted using bone cement. Neither patient-specific guides nor navigation were used. Patients were prospectively assessed using shoulder functional assessments (Oxford Shoulder Score [OSS], American Shoulder and Elbow Standardized Shoulder Assessment Form [ASES], visual analogue scale [VAS] pain scores and forward elevation [FE]) preoperatively, at three, six, and 12 months, and yearly thereafter, with similar radiological surveillance. Forty-nine consecutive series shoulders had a follow-up of greater than 24 months, with a median follow-up of 48 months (range: 24–87 months). Median outcome scores improved for OSS (21 to 44), ASES (24 to 92), VAS (7 to 0), and FE (90º to 140º). Four patients died, but no others were lost to follow-up. Apart from one infection at 18 months postoperatively and one minor peg perforation, there were no complications, hardware failures, implant displacements, significant lucency or posterior re-subluxations. Radiographs showed good incorporation of the wedge augment with correction of glenoid retroversion from median 22º (13º to 46º) to 4º. All but four glenoids were corrected to within the target range (less than 10º retroversion). The porous metal wedge-shaped augments effectively addressed posterior glenoid deficiency as part of aTSA for rotator cuff intact osteoarthritis, producing satisfactory clinical outcomes with no signs of impending future failure


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 91 - 91
1 Feb 2020
Baral E Purcel R Wright T Westrich G
Full Access

Introduction. Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the bone ingrowth extent for tibial tray designs reporting near 30% extent of bone ingrowth . (1,2). While these analyses were performed on implants that demonstrated unacceptably high rates of clinical failure, a paucity of data exists on the extent on bone ingrowth in contemporary implant designs with newer methods for manufacturing the porous surfaces. We sought to evaluate the extent of attached bone on retrieved cementless tibial trays to determine if patient demographics, device factors, or radiographic results correlate to the extent of bone ingrowth in these contemporary designs. Methods. Using our IRB approved retrieval database, 17 porous tibial trays were identified and separated into groups based on manufacturer: Zimmer Natural Knee (1), Zimmer NexGen (10), Stryker Triathlon (4) and Biomet Vanguard Regenerex (2). Differences in manufacturing methods for porous material designs were recorded. Patient demographics and reason for revision are described in Table 1. Radiographs were used to measure tibiofemoral alignment and the tibial mechanical axis alignment. Components were assessed using visual light microscopy and Photoshop to map bone ingrowth extent across the porous surface. ImageJ was used to threshold and calculate values for bone, scratched metal, and available surface for bone ingrowth (Fig. 1). Percent extent was determined as the bone ingrowth compared to the surface area excluding any scratched regions from explantation. Statistics were performed among tray designs as well as between the lateral and medial pegs, if designs had pegs available for bony ingrowth. Results. Mean bone ingrowth extent was 51.4% for the tibial tray for the entire cohort. Bone ingrowth extent was statistically greater in the Zimmer NexGen design (63.8%; p=.027) compared to the other three designs (Table 2). Four sets of pegs were excluded from analysis due to lack of porous coatings or pegs having been removed at revision surgery. Across all designs, the medial peg had 45.2% ingrowth and the lateral peg had 66.1% ingrowth. The medial peg for the NexGen design had significantly less bone ingrowth compared to the lateral peg (58.7% vs. 75.4%; p=0.044). No significant differences were found in tibiofemoral alignment or tibial mechanical axis alignment between the implant groups. No significant differences were found among implants revised for aseptic loosening versus any other reason for revision (54% vs 30%; p=.18). Discussion. Our results demonstrate high rates of bone ingrowth extent in contemporary designs, further supporting porous design rationales and a role for additive manufacturing to form enhanced porosity. We plan on exploring staining techniques to confirm our visual inspection. Contemporary designs have shown successful rates for improved longevity for cementless total knee systems. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 5 - 5
1 Jul 2020
Tanzer M Chuang P Ngo C Aponte C Song L TenHuisen K
Full Access

Porous surfaces on orthopaedic implants have been shown to promote tissue ingrowth. This study evaluated biological fixation of novel additively manufactured porous implants with and without hydroxyapatite coatings in a canine transcortical model. Laser rapid manufacturing (LRM) Ti6Al4V cylindrical implants were built with a random interconnected architecture mimicking cancellous bone (5.2 mm diameter, 10mm length, 50–60% porous, mean pore size 450μm). Three groups were investigated in this study: as-built with no coating (LRM), as-built coated with solution precipitated hydroxyapatite (LRM-PA), and as-built coated with a plasma sprayed hydroxyapatite (LRM-PSHA). Implants were press-fit into a 5mm unicortical, perpendicular drill hole in the femoral diaphysis of the left and right femurs in 12 canines. Right femora were harvested for histology (SEM, bone ingrowth into implant within cortical region) and left femora for mechanical push-out testing (shear strength of bone-implant interface) at 4 and 12 weeks (N=6, un-paired Student's t-test, p=0.05). For mean bone ingrowth, there was no significant difference between groups at 4 weeks (LRM, LRM-PA, LRM-PSHA: 41.5+8.6%, 51+5.5% and 53.2+11%, respectively) or 12 weeks (LRM, LRM-PA, LRM-PSHA: 64.4+2.8%, 59.9+7.6%, 64.9+6.4%, respectively). LRM and LRM-PA implants had more bone ingrowth at 12 weeks than 4 weeks (p < 0 .05). Mean shear strength of all implants at 12 weeks (LRM, LRM-PA, LRM-PSHA: 39.9+3.6MPa, 33.7+4.6MPa, 36+4.1MPa respectively) were greater than at 4 weeks (LRM, LRM-PA, LRM-PSHA: 21.6+2.8MPa, 20.7+1.1MPa, 20.2+2.5MPa respectively) (p < 0 .05). No significant difference was observed between all groups at 4 or 12 weeks. Overall, this canine study confirmed the suitability of this novel additive manufacturing porous material for biological fixation by bone ingrowth. All implants exhibited high bone ingrowth and mechanical shear strength in this canine model. No difference was observed between uncoated and hydroxyapatite coated implants


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 80 - 80
1 Feb 2020
Robotti P Luchin V Galeotti F Molinari A
Full Access

AM Open Cell porous Ti Structures were investigated for compressive strength, morphology (i.e. pore size, struts size and porosity), and wear resistance with the aim to improve design capability at support of implant manufacturing. Specimens were manufactured in Ti6Al4V using a SLM machine. Struts sizes had nominal diameters of 200µm or 100µm, pores had nominal diameters of 700µm, 1000µm or 1500µm. These dimensions were applied to three different open-cell geometrical configurations: one with unit-cells based on a regular cubic arrangement (Regular), one with a deformed cubic arrangement (Irregular), and one based on a fully random arrangement (Fully Random). Morphological analysis was performed by image analysis applied onto optical and SEM acquired pictures. The analyses estimated the maximum and minimum Feret pores diameter, and the latter was used as one of the key parameters to describe the interconnected network of pores intended for bone colonization. Outcome revealed the systematic oversizing of the actual struts diameter Vs designed diameter; by opposite min. Feret diameters of the pores resulted significantly smaller than nominal pore diameters, thus better fitting within the range of pores dimension acknowledged to favor the osseointegration. Consequently, the actual total porosity is also reduced. Many technologic factors are responsible for the morphologic differences design vs actual, among these the influence of melting pool dimension, the struts orientation during building and the layer thickness have a significant impact. Mechanical compression was performed on porous cylinder samples. Test revealed the Yield Strength and Stiffness are highly sensitive to the actual porosity. Deformation behavior follows densification phenomenon at lower porosity, whereas at higher porosity the Gibson-Ashby model fits for most of the structure tested. The relationship among load direction, struts alignment and the collapse behavior of the unit cell geometries are discussed. Stiffness of the porous structure is evaluated in both quasistatic and cyclic compression. Wear was investigated according to Taber test method. The abrasion resistance is measured by scratching a ceramic wheel against the different AM porous structures along a circular path. Metal debris eventually loss were quantified by gravimetric analysis at different number of cycles. Correlation among AM porous structure geometry, porosity and wear loss is discussed. All the tested structures showed a debris loss within the limit suggested by FDA for the porous coating in contact with the bone tissue. The actual AM porous Titanium unit cell geometry and features are a key design input. In combination with all the other design factors of a device they may result helpful in address the stress shielding and prevent metal debris release issues. The study underlines the importance of the research activity in AM to support Design for Additive Manufacturing (DFAM) capability. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 73 - 73
1 Jul 2020
Yeoh J Chin P Regan WD Lim B Sasyniuk T Sayre E
Full Access

Glenoid failure remains the most common mode of total shoulder arthroplasty failures. Porous tantalum metal (Trabecular Metal™, Zimmer) have grown in popularity in hip and knee arthroplasty. First-generation porous tantalum metal-backed glenoid components demonstrated metal debris, resulted in failure, and were revised to second-generation glenoid implants. Evidence for second-generation porous tantalum metal implants in shoulder arthroplasty is sparse.1–4 The purpose of this study was to assess clinical and radiographic outcomes in a series of patients with second-generation porous tantalum glenoid components at a minimum two-years postoperative. We retrospectively reviewed the clinical and radiographic outcomes of patients who received a second-generation porous tantalum glenoid component anatomic shoulder arthroplasty between May 2009 and December 2017 with minimum 24 months follow-up. The shoulder arthroplasties were performed by one of two senior fellowship-trained surgeons. We collected postoperative clinical outcome indicators: EQ5D visual analog scale (VAS), Western Ontario Osteoarthritis of the Shoulder (WOOS) Index, American Shoulder and Elbow Surgeons (ASES) Score, and Constant Score (CS). Radiographic review was performed by an independent fellowship-trained surgeon. The Endrizzi metal debris grading system1 was utilized to grade metal debris. We computed descriptive statistics and compared outcome scores between groups via the non-parametric Wilcoxon rank-sum test, with group-wise comparisons defined by: metal debris and humeral head migration (secondary analyses). Thirty-five patients [23 male (65.7%) and 12 female (34.3%)] with 40 shoulder replacements participated in the study. Forty of 61 shoulders (65.6%) had an average of 64 ± 20.3 months follow-up (range 31 to 95). Average BMI was 27.5 ± 4.4 kg/m2 (range 19.5 to 39.1). The average postoperative EQ5D VAS at final follow-up was 74.6 ± 22.5, WOOS Index 87.9 ± 16.6, ASES Score 88.3 ± 10.9, and CS 80.4 ± 13. At final follow-up, 18 of 40 shoulders (45%) had metal debris [15 of 40 (37.5%) Endrizzi grade 1 and three of 40 (7.5%) Endrizzi grade 2], and 22 of 40 shoulders (55%) did not show evidence of metal debris. There was one non-revision reoperation (open subscapularis exploration), one shoulder with anterosuperior escape, three shoulders with glenoid radiolucencies indicative of possible glenoid loosening, and nine shoulders with superior migration of the humeral head (>2mm migration at final follow-up compared to immediate postoperative). When comparing postoperative scores between patients with vs without metal debris, we found no statistically significant difference in the EQ5D VAS, WOOS Index, ASES Score and CS. On further analyses, when comparing superior migration of the humeral head and postoperative outcomes scores, we found no statistically significant difference. We report the longest published follow-up with clinical and radiographic outcomes of second-generation porous tantalum glenoid anatomic shoulder arthroplasties. In this series of patients, 45% of total shoulder arthroplasties with a second-generation porous tantalum glenoid implant had radiographic evidence of metal debris. This metal debris was not statistically associated with poorer postoperative outcomes. Further investigation and ongoing follow-up are warranted


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 31 - 31
1 Jul 2020
Jahr H Pavanram P Li Y Lietaert K Kubo Y Weinans H Zhou J Pufe T Zadpoor A
Full Access

Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions. Biocompatibility was comprehensively evaluated using a broader spectrum of human cells according to ISO 10993 guidelines, with topographically identical titanium (Ti-6Al-4V, Ti64) specimen as reference. Cytotoxicity was analyzed by two-way ANOVA and post-hoc Tukey's multiple comparisons test (α = 0.05). By μCT, as-built strut size (420 ± 4 μm) and porosity of 64% ± 0.2% were compared to design values (400 μm and 67%, respectively). After 28 days of biodegradation scaffolds showed a 3.1% weight reduction after cleaning, while pH-values of simulated body fluids (r-SBF) increased from 7.4 to 7.8. Mechanical properties of scaffolds (E = 1600–1800 MPa) were still within the range for trabecular bone, then. At all tested time points, close to 100% biocompatibility was shown with identically designed titanium (Ti64) controls (level 0 cytotoxicity). Iron scaffolds revealed a similar cytotoxicity with L929 cells throughout the study, but MG-63 or HUVEC cells revealed a reduced viability of 75% and 60%, respectively, already after 24h and a further decreased survival rate of 50% and 35% after 72h. Static and dynamic cultures revealed different and cell type-specific cytotoxicity profiles. Quantitative assays were confirmed by semi-quantitative cell staining in direct contact to iron and morphological differences were evident in comparison to Ti64 controls. This first report confirms that DMP allows accurate control of interconnectivity and topology of iron scaffold structures. While microstructure and chemical composition influence degradation behavior - so does topology and environmental in vitro conditions during degradation. While porous magnesium corrodes too fast to keep pace with bone remodeling rates, our porous and micro-structured design just holds tremendous potential to optimize the degradation speed of iron for application-specific orthopaedic implants. Surprisingly, the biological evaluation of pure iron scaffolds appears to largely depend on the culture model and cell type. Pure iron may not yet be an ideal surface for osteoblast- or endothelial-like cells in static cultures. We are currently studying appropriate coatings and in vivo-like dynamic culture systems to better predict in vivo biocompatibility


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 267 - 267
1 Dec 2013
Cohen R
Full Access

Cementless biologic fixation surfaces on total joint replacement devices, such as those used in total hip and knee procedures, have evolved over the decades. Historically, various surfaces to allow bone ingrowth or ongrowth have been applied as a coating to a pre-formed solid metal substrate. As shown in Figure 1, from left to right, representative coating surfaces include sintered beads, diffusion-bonded fiber metal, and plasma sprayed titanium. In certain applications, tantalum porous metal (Fig 1, left) can be used without a solid metal substrate, but its most widespread usage is in a modular acetabular cup design with the porous metal diffusion-bonded to a solid metal substrate similar to other coatings. Each of these examples of biologic fixation surfaces has limitations. With comparatively low porosity, bead, fiber metal and plasma spray coatings are simply a surface enhancement onto a rigid machined, forged or cast metal substrate. Furthermore, the thermal process to apply the coatings can adversely affect the mechanical properties of the metal substrate. Released in the 1990's, tantalum porous metal is considered a ‘highly porous metal’ with twice the porosity of the applied surface coatings. With that greater porosity comes lower strength that requires engineers to make standalone tantalum porous metal shapes more bulky. The chemical deposition process to produce tantalum porous metal shapes has also limitations on geometry possibilities. Where bonding the tantalum porous metal to a solid metal substrate is necessary for adequate strength, that diffusion bonding process pressure can diminish the surface coefficient of friction necessary for initial stability. A new class of manufacturing processing, referred to as ‘additive manufacturing’, allows engineers to create unique porous configurations. These configurations can be fabricated with beneficial properties to a specific implant application. One such enabling additive manufacturing process is called direct metal laser sintering (DMLS). This process utilizes a laser that travels over a fine powder bed. The laser path is determined by a program that mimics a computer model. Where the laser contacts the powder bed, the powder consolidates. Layer by layer, a scaffold porous metal is fabricated. Figure 2 shows a titanium alloy porous metal structure produced by DMLS. This formed biomaterial has 65% porosity, a high coefficient of friction, low stiffness, and strength that is 2 to 3 times that of tantalum porous metal. From a design versatility perspective, with greater strength, relatively thinner and more bone conserving geometries can be developed. When a solid metal surface interface to secure a modular polymer bearing is required, the DMLS process can produce the solid surface and the porous metal at the same time. With no secondary bonding thermal cycle needed, the construct's mechanical integrity is not compromised. Advancing biologic fixation necessitates bone conserving implant designs that have the properties to achieve immediate mechanical stability and longer term bone ingrowth. This novel use of DMLS in this particular porous metal geometry allows engineers to meet those criteria


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 58 - 58
1 Dec 2016
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented highly porous ingrowth acetabular components can be used for the reconstruction of the vast majority of revision cases, especially where small to mid-sized segmental or cavitary defects are present which do not compromise stable mechanical support by the host bone for the cup after bone preparation is complete. A mechanically stable and near motionless interface between the host bone and the implant is required over the initial weeks post-surgery for bone ingrowth to occur, regardless of the type of porous surface employed. As bone deficiency increases, the challenge of achieving rigid cup fixation also increases, especially if the quality of the remaining host bone is compromised. A stepwise approach to enhanced fixation of the highly porous revision acetabular component is possible as follows:. Maximise Screw Fixation. Use of a limited number of screws in the dome only (as routinely occurs with a cluster hole design) is inadequate, except for primary arthroplasty cases or very routine revision cases with little or no bone loss and good bone quality. Otherwise an array of screws across the acetabular dome and continuing around the posterior column to base of the ischium is strongly recommended. This can help prevent early rocking of the cup into a more vertical position due to pivoting on dome screws used alone, via cup separation inferiorly in zone 3. A minimum of 3 or 4 screws in a wide array are suggested and use of 6 or more screws is not uncommon if bone quality is poor or defects are large. Cement the Acetabular Liner into the Shell. This creates a locking screw effect, which fixes the screw heads in position and prevents any screws from pivoting or backing out. Acetabular Augments (vs Structural Allograft). When critical segmental defects are present which by their location or size preclude stable support of the cup used alone, either a structural allograft or highly porous metal augment can provide critical focal support and enhance fixation. Highly porous metal augments were initially developed as a prosthetic allograft substitute in order to avoid the occasional graft resorption and loss of fixation sometimes seen with acetabular allograft use. Cup-Cage Construct. If one or more of the above strategies are used and fixation is deemed inadequate, it is possible to add a ½ or full acetabular cage “over the top” of the acetabular component before cementing a polyethylene liner in place. The full cup cage construct can be used for maximal fixation in cases of pelvic dissociation, alone or in combination with the distraction method as described by Paprosky. Use of a ½ cage is technically simpler and requires less exposure than a full cage, but still greatly enhances rigidity of fixation when transverse screws into the ilium are combined with standard screws in the cup including vertically into the dome. These techniques used in combination with highly porous tantalum implants have allowed durable fixation for the full range of reconstructive challenges and bone defects encountered. Newer 3-D printed titanium highly porous materials have recently been introduced by multiple manufacturers as a potential alternative that may be more cost effective, but these implants and materials will require clinical validation over the years ahead


Introduction. The ability to manufacture implants at the point-of-care has become a desire for clinicians wanting to provide efficient patient-specific treatment. While some hospitals have adopted extrusion-based 3D printing (fused filament fabrication; FFF) for creating non-implantable instruments with low-temperature plastics, recent innovations have allowed for the printing of high-temperature polymers such as polyetheretherketone (PEEK). Due to its low modulus of elasticity, high yield strength, and radiolucency, PEEK is an attractive biomaterial for implantable devices. Though concerns exist regarding PEEK for orthopaedic implants due to its bioinertness, the creation of porous networks has shown promising results for bone ingrowth. In this study, we endeavor to manufacture porous PEEK constructs via clinically-used FFF. We assess the effect of porous geometry on cell response and hypothesize that porous PEEK will exhibit greater preosteoblast viability and activity compared to solid PEEK. The work represents an innovative approach to advancing point-of-care 3D printing, cementless fixation for total joint arthroplasty, and additional applications typically reserved for porous metal. Methods. Three porous constructs – a rectilinear pattern and two triply period minimal surface (TPMSs) - were designed to mimic the morphology of trabecular bone. The structures, along with solid PEEK samples for use as a control, were manufactured via FFF using PEEK. The samples were mCT scanned to determine the resulting pore size and porosity. The PEEK constructs were then seeded with pre-osteoblast cells for 7 and 14 days. Cell proliferation and alkaline phosphatase activity (ALP) were evaluated at each time point, and the samples were imaged via SEM. Results. mCT imaging showed the pores in the PEEK constructs to be open and interconnected. The average pore size was 535 ± 92 µm for the rectilinear, 484 ± 237 µm for the diamond, and 669 ± 216 µm for the gyroid. Porosity was 71% for the rectilinear, 76% for the diamond, and 68% for the gyroid. The average error between the theoretical and actual values was −37.3 µm for pore size and −2.3 % for porosity. Normalized ALP activity of the three porous PEEK samples at 7 days were found to be significantly greater than the solid sample (p < 0.05 rectilinear, p < 0.005 gyroid, p < 0.001 diamond). At 14 days, the same relationships were observed (p < 0.001 for all three designs). No difference between the three geometries was found. SEM imaging revealed cells with flat, elongated morphology attached to the surface of the PEEK. The 14-day samples appeared to have proliferated well and spread along the PEEK pores. Extensions of filopodia and lamellipodia were observed along with large blankets of cells covering the PEEK surface. Discussion. We demonstrated the ability of FFF printed porous PEEK surfaces to promote cellular processes necessary for bone-implant fixation. While all porous structures showed promising results, more investigation into their material characteristics and osteogenic potential are necessary to determine which geometry may be suitable for orthopaedic use. Our work offers an innovative approach to advancing point-of-care 3D printing, cementless implant fixation, and additional applications typically reserved for porous metal


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 501 - 501
1 Dec 2013
Reitman R Vinciguerra J
Full Access

The clinical outcome and radiographic analysis of 82 patients undergoing total hip arthroplasty using a titanium acetabular component coated with a new proprietary Titanium Porous Coating inserted without cement are reported. All total hip replacements were performed by a single surgeon and utilized a porous coated, cementless femoral component. Pre clinical testing was carried out in an animal model to evaluate the new porous coating. THR was performed using a cementless acetabular component of the same geometrical design inserted without cement. The component is coated with a new proprietary Titanium Porous Coating wherein the non-spherical bead itself is also porous. This creates a “lava rock” type of structure and gives variability in the pore sizes that aids in the in-growth and apposition of bone (fig 5). The inter-bead pore size: the pore size between each non-spherical bead = 200–525 μm while the Intra-bead pore size: the pore size within each non-spherical bead = 25–65 μm. The resulting surface is extremely rough and provides a robust initial “bite” or “stick” to the bone. Clinical results were evaluated using the Harris Hip score and were recorded prospectively preoperatively and at 6 weeks, 6 months, and 1 year postoperatively. Radiographs were evaluated for component migration, subsidence, and cortical and cancellous biologic response as well as zonal analysis of radiolucent lines, using the Muller THR template. Pre-clinical animal testing of the new porous coating was carried out in 50 sheep using a metacarpal intramedulary implant (similar to a hip stem) designed to function as a Percutaneous Osseointegrated Prosthesis (POP) for amputees and evaluated Apposition Bone Index (ABI) (fig 1), Mineral Apposition Rate (MAR) (fig 2),% Bone In-growth (fig 3), and Axial Pull-out Force (fig 4). Sheep were sacrificed at time points of 0, 3, 6, 9, and 12 months to measure and evaluate the above parameters. Human clinical and radiographic follow up averaged 10.5 months (range 2–18 months). There were 39 females and 43 males. Average age was 59 years. The clinical results were excellent with respect to both pain and function at mid term follow up. Patient satisfaction was high. Radiographic analysis showed no migration or change in the angle of inclination at latest follow up. Femoral component subsidence was detected in 2 cases and averaged 1.8 mm. No polyethylene wear was detected. No hips dislocated. No hips underwent additional surgery. Pre-clinical test data demonstrated excellent mechanical and biological attributes. Average tensile strength of the coating surpassed the FDA minimum requirement by 3X. Animal testing in the sheep showed no evidence of stem loosening or need for revision after 12 months, and corroborated well with clinical results. Correlation between the pre-clinical testing and the human experience was exceptional. Application of a new titanium porous coating utilizing a proprietary dual pore size structure to the surface of the acetabular component provides an extremely rough surface and robust initial fixation during cementless THR. Excellent early clinical and radiographic results are demonstrated. The addition of this new type of porous coating to other arthroplasty components may confer additional clinical advantages


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 63 - 63
1 Feb 2015
Berry D
Full Access

Highly porous metal surfaces have transformed acetabular revision surgery by providing (1) enhanced friction which potentially provides greater primary fixation, (2) enhanced bone ingrowth potential, (3) enhanced screw fixation options. These characteristics have led many surgeons to use these devices routinely in acetabular revision and have led to an expansion of the indications for porous uncemented hemispherical cups in acetabular revision. Mid-term results suggest that the historical indications for hemispherical cups in revision surgery can be moderately expanded with some implants with these characteristics. In a recent study of 3448 revision total hip arthroplasties, we found porous tantalum cups had a statistically lower revision rate than other materials/designs. Highly porous metals also have provided the options of metal augments to fill selected bone defects—which can both enhance cup fixation and manage bone loss simultaneously. A number of different highly porous metals are now available, and how each will perform is not yet known. Highly porous metal shells may be used in combination with highly porous metal augments to make up for segmental bone deficiency. Examples will be shown. Finally, highly porous metal shells may be used as a “cup-cage” combination to provide extra initial cup mechanical stability in extreme cases. Examples will be shown


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 40 - 40
1 Jan 2016
Beckmann N Bitsch R Seeger J Klotz M Reiner T Kretzer JP Jaeger S
Full Access

Introduction. The frequency of revision hip arthroplasty is increasing with the increasing life expectancy and number of individuals treated with joint replacement. Newer porous implants have been introduced which may provide better treatment options for revision arthroplasty. These may require cementation to other prosthesis components and occasionally to bone, however, there is currently no information on how these porous implants interface with cement. Materials and Methods. Cylindrical bone (control group) and porous metal probes with a diameter and height of 10mm were created and subsequently cemented in a standardized setting. These were placed under tensile and torsional loading scenarios. In this experimental study, 10 human femoral heads were used to create 20 cylindrical probes with a diameter and height of 10mm. One side was tapered to 6mm for cementation and interface evaluation. A further set of 20 probes of a porous metal implant (Trabecular Metal®) was created with the same geometry. After the probes were created and lavaged, they were cemented at the tapered surface using a medium viscosity cement at a constant cementation pressure (1.2N/mm2). The setup allowed for comparison of the porous metal/cement interface (group A) with the well-studied control group interface bone/cement (group B). The maximal interface stability of groups A and B were evaluated under tensile and rotational loading scenarios and the cement penetration was measured. Results. Group A showed a significantly decreased cement penetration under the same cementation pressure than group B, yet the interface showed a significantly more stable interface in the measured tests: larger maximum tensile force (effect size 2.7), superior maximum tensile strength (effect size 2.6), greater maximum torsional force (effect size 2.2), and higher rotational stiffness (effect size 1.5). Discussion and Conclusion. The porous metal/cement interface displays substantially more stability than does the bone/cement interface. Although these tests evaluate initial stability in an in-vitro setting, they appear promising with regard to their cemented stability. As a result, a multicomponent porous metal construct with cement interdigitation should not compromise the overall implant primary stability


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 61 - 61
1 May 2014
Berry D
Full Access

Highly porous metal surfaces have transformed acetabular revision surgery by providing (1) enhanced friction which potentially provides greater primary fixation, (2) enhanced bone ingrowth potential, (3) enhanced screw fixation options. These characteristics have led many surgeons to use these devices routinely in acetabular revision and have led to an expansion of the indications for porous uncemented hemispherical cups in acetabular revision. Mid-term results suggest that the historical indications for hemispherical cups in revision surgery can be moderately expanded with some implants with these characteristics. In a recent study of 3448 revision total hip arthroplasties, we found porous tantalum cups had a statistically lower revision rate than other materials/designs. Highly porous metals also have provided the options of metal augments to fill selected bone defects—which can both enhance cup fixation and manage bone loss simultaneously. A number of different highly porous metals are now available, and how each will perform is not yet known


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 115 - 115
1 Feb 2020
Tran N Nuño N Reimeringer M
Full Access

Background. It is known that severe cases of intervertebral disc (IVD) disease may lead to the loss of natural intervertebral height, which can cause radiating pain throughout the lower back and legs. To this point, surgeons perform lumbar fusion using interbody cages, posterior instrumentation and bone graft to fuse adjacent vertebrae together, thus restoring the intervertebral height and alleviating the pain. However, this surgical procedure greatly decreases the range of motion (ROM) of the treated segment, mainly caused by high cage stiffness. Additive manufacturing can be an interesting tool to reduce the cage's elastic modulus (E), by adding porosity (P) in its design. A porous cage may lead to an improved osteointegration since there is more volume in which bone can grow. This work aims to develop a finite element model (FEM) of the L4-L5 functional spinal unit (FSU) and investigate the loss of ROM induced by solid and porous cages. Materials and Methods. The Intact-FEM of L4-L5 was created, which considered the vertebrae, IVD and ligaments with their respective material properties. 1. The model was validated by comparing its ROM with that of other studies. Moments of 10 Nm were applied on top of L4 while the bottom of L5 was fixed to simulate flexion, extension, lateral bending and axial rotation. 2. The lumbar cages, posterior instrumentation and bone graft were then modelled to create the Cage-FEMs. Titanium was chosen for the instrumentation and cages. Cages with different stiffness were considered to represent porous structures. The solid cage had the highest modulus (E. 0. =110 GPa, P. 0. =0%) whereas the porous cages were simulated by lowering the modulus (E. 1. =32.8 GPa, P. 1. =55%; E. 2. =13.9 GPa, P. 2. =76%; E. 3. =5.52 GPa, P. 3. =89%; E. 4. =0.604 GPa, P. 4. =98%), following the literature. 3. The IVD was removed in Cage-FEMs to allow the implant's insertion [Fig. 1] and the previous loading scenarios were simulated to assess the effects of cage porosity on ROM. Results. The Intact-FEM presents acceptable ROM according to experimental and numerical studies, as shown by the red line in Figure 2. After insertion, lower ROM values in Cage-FEMs are measured for each physiological movement [Fig. 3]. In addition, highly porous cages have greater ROM, especially in axial rotation. Discussion. Significant reduction of ROM is expected after cage insertion because the main goal of interbody fusion is to allow bone growth. As such, the procedure's success is highly dependent on segmental stability, which is achieved by using cages in combination with bone graft and posterior instrumentation. Furthermore, higher cage porosities seem to affect the FSU. In fact, ROM increases more as the cage modulus approaches that of the cancellous bone (E. canc-bone. =0.2 GPa. 1. ). Next step will be to assess the effects of cage design on the L4-L5 FSU mechanical behavior and stress distribution. To conclude, additive manufacturing offers promising possibilities regarding implant optimization, being able to create porous cages, thus reducing their stiffness. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 99 - 99
1 Aug 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Three separate patterns of augment placement have been utilised in our practice since the development of these implants a decade ago: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely, but the need for structural bone is avoided. From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of the 1,789 revision hip cases performed at our institution. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic and clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. Three separate patterns of augment placement were utilised: Type 1 - augment screwed onto the superolateral acetabular rim (21%), Type 2 – augment fixed to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect (34%), and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial medial wall (45%). At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Smaller patients are more likely to require this approach as reaming away defects to allow insertion of a jumbo cup is more difficult with a smaller AP dimension to the acetabular columns and less local bone for implant support. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 29 - 29
1 Feb 2017
Baral E Trivellas M Ricciardi B Esposito C Wright T Padgett D
Full Access

Introduction. Cementless acetabular components are commonly used in primary and revision total hip arthroplasty, and most designs have been successful despite differences in the porous coating structure. Components with 2D titanium fiber mesh coating (FM) have demonstrated high survivorships up to 97% at 20 years. 1. 3D tantalum porous coatings (TPC) have been introduced in an attempt to improve osseointegration and therefore implant fixation. Animal models showed good results with this new material one year after implantation. 2. , and clinical and radiographic studies have demonstrated satisfactory outcomes. 3. However, few retrieval studies exist evaluating in vivo bone ingrowth into TPC components in humans. We compared bone ingrowth between well-fixed FM and TPC retrieved acetabular shells using backscatter scanning electron microscopy (BSEM). Methods. 16 retrieved, well-fixed, porous coated acetabulum components, 8 FM matched to 8 TPC by gender, BMI and age, all revised for reasons other than loosening and infection, were identified from our retrieval archive (Fig. 1). The mean time in-situ was 42 months for TPC and 172 for FM components. Components were cleaned, dehydrated, and embedded in PMMA. They were then sectioned, polished, and examined using BSEM. Cross-sectional slices were analyzed for percent bone ingrowth and percent depth of bone ingrowth (Fig. 2). Analysis was done using manual segmentation and grayscale thresholding to calculate areas of bone, metal, and void space. Percent bone ingrowth was determined by assessing the area of bone compared to the void space that had potential for bone ingrowth. Results. The average bone ingrowth was 19.2% for the eight FM components and 6.9% for the eight TPC components. Bone ingrowth in the FM components was quite variable, ranging from as little as 2.3% to as much as 71.6%. Conversely, the amount of bone ingrowth seen in the TCP acetabular cups was less variable, ranging from 0.4% to 13%. By design, TPC cups were more porous; the retrieved TPC cups had ∼65–75% porosity (area void space divided by total area of void space plus metal), while the retrieved FM cups had ∼40–50% porosity. No relation was found between bone ingrowth measured in the retrievals at the length of time that they had been implanted. Discussion. The TPC retrievals were well-fixed at revision surgery, despite the small percent of the coating that had bone ingrowth. Other factors, such as high coefficient of friction, leading to effective initial fixation and sufficient bone ongrowth rather than ingrowth, may impact clinical performance. A previous study of post-mortem, well-fixed retrieved FM cups found 12 ±8% bone area ingrowth. 4. , similar to our findings. Ongoing retrieval analysis will provide further insight into possible regional trends and material ingrowth differences


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 57 - 57
1 Apr 2017
Lewallen D
Full Access

Major bone loss involving the acetabulum can be seen during revision THA due to component loosening, migration or osteolysis and can also occur as a sequela of infected THA. Uncemented porous ingrowth components can be used for reconstruction of the vast majority of revision cases, where smaller segmental or cavitary defects are typically present. But when stable structural support on host bone is lacking, highly porous metal acetabular augments have been described as an alternative to large structural allograft, avoiding the potential for later graft resorption and the resulting loss of mechanical support that can follow. The fundamental concept behind these acetabular augments is the provision of critical additional fixation, structural support and increased contact area against host bone over the weeks following surgery while the desired ingrowth into porous implant surfaces is occurring. Technique: Three separate patterns of augment placement have been utilised in our practice since the development of these implants: Type 1 - augment screwed onto the superolateral acetabular rim in a “flying buttress” configuration for treatment of a segmental rim defect, Type 2 – augment placed superiorly against host and then fixed (with cement) to the acetabular component adjacent to the cup to fill a mainly elliptical cavitary defect, and Type 3 – augment(s) placed medial to the cup to fill a protrusio type cavitary or combined cavitary segmental defect of the superomedial or medial wall, and allow peripheral cup placement against the still intact acetabular rim. In all cases the acetabular component and augment interface is fixed together with cement, with care to prevent any cement extrusion between any implant and the bone. When possible, we now prefer to place the acetabular component first and fix it provisionally with 2 or more screws, and then place the augments second as this is technically quicker and easier. This order of insertion is only possible though in type 1 and a few select type 2 cases. Type 3 cases always require placement of one or more augments first, before cup insertion. Supplemental cancellous bone graft is used routinely. Results: From 2000 through 2007, porous tantalum acetabular augments were used very selectively in 85 revision THA procedures out of total of 1,789 revision hip cases performed at our institution in that time frame. All cases had associated massive acetabular deficiency precluding stable mechanical support for a cup alone. Fifty-eight hips had complete radiographic as well as clinical follow at minimum 5 years. The majority of patients had either Paprosky type 3A defects (28/58, 48%) or 3B defects (22/58, 38%). Ten out of 58 had pre-operative pelvic discontinuities. At 5 years, 2/58 (3%) were revised for aseptic loosening and another 6/58 demonstrated incomplete radiolucencies between the acetabular shell and zone 3. One of the revised cups and 5 of 6 of the cups with radiolucencies had an associated pelvic discontinuity. Summary: Highly porous metal acetabular augments are an infrequently needed, but extremely valuable, versatile and reliable adjunctive fixation method for use with uncemented acetabular components during complex revision THA associated with major bone deficiency. Intermediate term durability and apparent radiographic incorporation has been very good despite the complex reconstructions originally required. This technique can allow the avoidance of structural bone grafting for even the most massive of bone defect problems, but additional followup is needed to see how durable these encouraging results are over the longer term


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 14 - 14
1 Mar 2012
Kim W Hu Y Duan K Wang R Garbuz D Masri B Duncan C
Full Access

Introduction. Achieving durable implant–host bone fixation is the major challenge in uncemented revision hip arthroplasty when significant bone stock deficiencies are encountered. The purpose of this study was to develop an experimental model which would simulate the clinical revision hip scenario and to determine the effects of alendronate coating on porous tantalum on gap filling and bone ingrowth in the experimental model. Methods. Thirty-six porous tantalum plugs were implanted into the distal femur, bilaterally of 18 rabbits for four weeks. There were 3 groups of plugs inserted; control groups of porous tantalum plugs (Ta) with no coating, a 2nd control group of porous tantalum plugs with micro-porous calcium phosphate coating, (Ta-CaP) and porous tantalum plugs coated with alendronate (Ta-CaP-ALN). Subcutaneous fluorochrome labelling was used to track new bone formation. Bone formation was analysed by backscattered electron microscopy and fluorescence microscopy on undecalcified histological sections. Results. The relative increase in mean volume of gap filling, bone ingrowth and total bone formation was 124%, 232% and 170% respectively in Ta-CaP-ALN compared with the uncoated porous tantalum (Ta) controls, which was statistically significant. The contact length of new bone formation on porous tantalum implants in Ta-CaP-ALN was increased by 700% (8-fold) on average compared with the uncoated porous tantalum (Ta) controls. Discussion. Alendronate coated porous tantalum significantly modulated implant bioactivity compared with controls. This study has demonstrated the significant enhancement of bone-implant gap filling and bone ingrowth, which can be achieved by coating porous tantalum with alendronate. It is proposed that, when faced with the clinical problem of revision joint replacement in the face of bone loss, the addition of alendronate as a surface coating would enhance biological fixation of the implant and promote the healing of bone defects


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 136 - 136
1 Jan 2016
Gonzalez FQ Reimeringer M Nuno N
Full Access

Introduction. After arthroplasty, stress shielding and high shear stresses at the bone-implant interface are common problems of load bearing implants (e.g. hip prostheses). Stiff implants cause stress shielding, which is thought to contribute to bone resorption. 1. High shear stresses, originated by low-stiffness implants, have been related to pain and interfacial micro-movements², prohibiting adequate implant initial fixation. A non-homogeneous distribution of mechanical properties within the implant could reduce the stress shielding and interfacial shear stresses. 3. Such an implant is called “functionally graded implant” (FGI). FGI require porous materials with well-controlled micro-architecture, which can now be obtained with new additive manufacturing technologies (e.g. Electron Beam Melting). Finite element (FE) simulations in ANSYS-v14.5 are used to develop an optimization methodology to design a hip FGI. Methodology. A coronal cut was performed on a femur model (Sawbones®) with an implanted Profemur®TL (Wright Medical Inc.) stem to obtain the 2D-geometry for FE simulations. The central part of the FGI stem was made porous, the neck and inferior tip were solid. Ti6Al4V elastic material was assumed (E=120 GPa, v=0.3). Three bone qualities were considered for the optimization: poor (E=6GPa; v=0.3); good (E=12GPa; v=0.3); excellent (E=30GPa; v=0.3). The structure of bone evolves to maintain a reasonable level of the strains. Similarly in the proposed algorithm, the strut sections of the porous material evolve to keep stresses (proportional to strains) at a reasonable level. Starting with a very small strut section, resulting in an almost zero-rigidity stem, strut sections are increased or decreased as a function of the stresses they support. This is done incrementally, until force values corresponding to normal walking of an 80 kg person (1867 N). 4. are reached. Force direction was vertical and no action of the abductors was considered, to analyze the worst case scenario. The optimized FGI microstructure is defined by the strut diameter distributions. Since the distance between struts remain constant, variations in strut diameters result in variations in density. Optimized FGI porous structure was compared for the three bone qualities considered and with a solid stem in terms of bone stresses. Results. Different bone qualities result in slightly different strut diameter distribution (Fig.1). An excellent bone quality (E=30 GPa) results in a less dense porous structure, where some dense zones are substituted by a thick strut surrounded by a low density area. As can be expected, a poor bone quality (E=6 GPa) results in a denser porous structure. Compared with the solid stem, in general the FGI stem produced higher bone stresses. Locally, the stresses augmented proximally, while diminished distally (Fig.2). This is expected to result in a smaller influence of stress shielding, and better load transfer. Conclusion. The presented algorithm succeeded obtaining an optimal strut diameter distribution from low rigidity struts, using a strategy similar to bone remodelling (i.e. maintaining certain stress level within the struts). Optimized diameter distribution was obtained with little computational cost