Advertisement for orthosearch.org.uk
Results 1 - 20 of 148
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism. A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine. A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels. This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 35 - 35
1 Dec 2022
Montanari S Griffoni C Cristofolini L Brodano GB
Full Access

Mechanical failure of spine posterior fixation in the lumbar region Is suspected to occur more frequently when the sagittal balance is not properly restored. While failures at the proximal extremity have been studied in the literature, the lumbar distal junctional pathology has received less attention. The aim of this work was to investigate if the spinopelvic parameters, which characterize the sagittal balance, could predict the mechanical failure of the posterior fixation in the distal lumbar region. All the spine surgeries performed in 2017-2019 at Rizzoli Institute were retrospectively analysed to extract all cases of lumbar distal junctional pathology. All the revision surgeries performed due to the pedicle screws pull-out, or the breakage of rods or screws, or the vertebral fracture, or the degenerative disc disease, in the distal extremity, were included in the junctional (JUNCT) group. A total of 83 cases were identified as JUNCT group. All the 241 fixation surgeries which to date have not failed were included in the control (CONTROL) group. Clinical data were extracted from both groups, and the main spinopelvic parameters were assessed from sagittal standing preoperative (pre-op) and postoperative (post-op) radiographs with the software Surgimap (Nemaris). In particular, pelvic incidence (PI), sagittal vertical axis (SVA), pelvic tilt (PT), T1 pelvic angle (TPA), sacral slope (SS) and lumbar lordosis (LL) have been measured. In JUNCT, the main failure cause was the screws pull-out (45%). Spine fixation with 7 or more levels were the most common in JUNCT (52%) in contrast to CONTROL (14%). In CONTROL, PT, TPA, SS and PI-LL were inside the recommended ranges of good sagittal balance. For these parameters, statistically significant differences were observed between pre-op and post-op (p<0.0001, p=0.01, p<0.0001, p=0.004, respectively, Wilcoxon test). In JUNCT, the spinopelvic parameters were out of the ranges of the good sagittal balance and the worsening of the balance was confirmed by the increase in PT, TPA, SVA, PI-LL and by the decrease of LL (p=0.002, p=0.003, p<0.0001, p=0.001, p=0.001, respectively, paired t-test) before the revision surgery. TPA (p=0.003, Kolmogorov-Smirnov test) and SS (p=0.03, unpaired t-test) differed significantly in pre-op between JUNCT and CONTROL. In post-op, PI-LL was significantly different between JUNCT and CONTROL (p=0.04, unpaired t-test). The regression model of PT vs PI was significantly different between JUNCT and CONTROL in pre-op (p=0.01, Z-test). These results showed that failure is most common in long fused segments, likely due to long lever arms leading to implant failure. If the sagittal balance is not properly restored, after the surgery the balance is expected to worsen, eventually leading to failure: this effect was confirmed by the worsening of all the spinopelvic parameters before the revision surgery in JUNCT. Conversely, a good sagittal balance seems to avoid a revision surgery, as it is visible is CONTROL. The mismatch PI-LL after the fixation seems to confirm a good sagittal balance and predict a good correction. The linear regression of PT vs PI suggests that the spine deformity and pelvic conformation could be a predictor for the failure after a fixation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 5 - 5
17 Apr 2023
Aljuaid M Alzahrani S Alswat M
Full Access

Cranio-cervical connection is a well-established biomechanical concept. However, literature of this connection and its impact on cervical alignment is scarce. Chin incidence (CI) is defined as a complementary to the angle between chin tilt (CHT) and C2 slope (C2S) axes. This study aims to investigate the relationship between cervical sagittal alignment parameters and CI with its derivatives. A retrospective cross-sectional study carried out in a tertiary center. CT-neck radiographs of non-orthopedics patients were included. They had no history of spine related symptoms or fractures in cranium or pelvis. Images’ reports were reviewed to exclude those with tumors in the c-spine or anterior triangle of the neck. A total of 80 patients was included with 54% of them were males. The mean of age was 30.96± 6.03. Models of predictability for c2-c7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) using C2S, CHT, and CI were significant and consistent r20.585 (f(df3,76) =35.65, P ≤0.0001, r=0.764), r20.474 (f(df2,77) =32.98, P ≤0.0001, r=-0.550), respectively. In addition, several positive significant correlations were detected in our model in relation to sagittal alignment parameters. Nonetheless, models of predictability for CA and SVA in relation to neck tilt (NT), T1 slope (T1S) and thoracic inlet axis (TIA) were less consistent and had a significant marginally weaker attributable effect on CA, however, no significant effect was found on SVA r20.406 (f(df1,78) =53.39, P ≤0.0001, r=0.620), r20.070 (f(df3,76) =1.904, P 0.19), respectively. Also, this study shows that obesity and aging are linked to decreased CI which will result in increasing SVA and ultimately decreasing CA. CI model has a more valid attributable effect on the sagittal alignment in comparison to TIA model. Future investigations factoring this parameter might enlighten its linkage to many cervical spine diseases or post-op complications (i.e., trismus)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 2 - 2
2 Jan 2024
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

In healthy subjects, respiratory maximal volumes are highly dependent on the sagittal range of motion of the T7-T10 segment. In AIS, the abolition of T7-T10 dynamics related to the stiffness induced by the apex region in Lenke IA curves could harm ventilation during maximal breathing. The aim of this study was to analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. This is a cross-sectional, case-control study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located at T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and exhalation. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12) and the global T1-T12 ROM were measured. In healthy subjects, the mean T1-T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05), indicating a sagittal stiffness of the thoracic spine. A wide T7-T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1-T12 ROM) (p<0.001). There was a significant positive correlation between the magnitude of T7-T10 kyphosis in maximal exhalation and both FVC (% of predicted FVC) and FEV1. In conclusion, Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment for deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 125 - 125
1 Nov 2021
Sánchez G Cina A Giorgi P Schiro G Gueorguiev B Alini M Varga P Galbusera F Gallazzi E
Full Access

Introduction and Objective. Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms. Materials and Methods. We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted. Results. Vertebras T12 to L2 were the most frequently involved, accounting for 48% of the fractures. Accuracies of 88% and 84% were obtained with ResNet18 and VGG16 respectively. The sensitivity was 89% with both architectures but ResNet18 had a significantly higher specificity (88%) compared to VGG16 (79%). The fracture zone used was precisely identified in 81% of the heatmaps. Conclusions. Our AI model can accurately identify anomalies suggestive of TL vertebral fractures in sagittal radiographs precisely identifying the fracture zone within the vertebral body


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 21 - 21
1 Dec 2021
Langley B Page R Whelton C Chalmers O Morrison S Cramp M Dey P Board T
Full Access

Abstract. Objectives. The objective of this proof of concept study was to explore whether some total hip arthroplasty (THA) patients with well-functioning implants achieve normal sagittal plane hip kinematics during walking gait. Methods. Sagittal plane hip kinematics were recorded in eleven people with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) using a three-dimensional motion capture system as they walked over-ground at a self-selected velocity. THA patients were classified as high- or low-functioning (HF and LF, respectively) depending on whether the mean absolute difference between their sagittal plane hip kinematics was within one standard deviation of the control group (5.4°) or not. Hedge's g effect size was used to compare the magnitude of the difference from the control group for the HF and LF THA groups. Results. Five THA patients were identified as HF and 6 as LF. The mean absolute difference in sagittal plane hip kinematics between the THA groups and the control group was on average 6.2° larger for the LF THA patients compared to the HF, with this difference associated with a large effect size (g = 1.84). Conclusions. The findings of this study challenge the findings of previous work which suggests THA patients do not achieve normal sagittal plane hip kinematics. Five patients were classified as HR and achieved motion patterns that were on average within the variance of the asymptomatic control group, suggesting normative sagittal plane hip kinematics. Understanding why some THA patients achieve motion patterns more comparable to healthy controls than others would help to develop means of maximising functional recovery, and potentially enhance both patient quality of life and implant survivorship through more normal loading of the implant


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 57 - 57
1 Dec 2020
Ateş YB Çullu E Çobanoğlu M
Full Access

Aim. To investigate the effect of the eight plate position in sagittal plane on tibial slope in temporary epiphysiodesis technique applied to the proximal tibia and whether there is a rebound effect after removing the plate. Method. Forty New Zealand rabbits (6 weeks old) were divided into four groups. In all groups, two 1.3 mm mini plates and cortical screws implantation were placed on both medial and lateral side of the proximal epiphysis of the right tibia. In Group 1 and 3, the plates were placed on anterior of the proximal tibial anatomical axis in the sagittal plane, and placed posteriorly in Group 2 and 4. The left tibia was examined as control in all groups. Group 1 and Group 2 were sacrificed after four week-follow-up. In Group 3 and Group 4, the implants were removed four weeks after index surgery and the rabbits were followed four more weeks to investigate the rebound effect. The tibial slope was measured on lateral X-rays every two weeks. Both medial and lateral plateau slopes were evaluated on photos of the dissected tibia. Results. In Group 1, right MTPA (medial tibial plateau angle) and left MTPA, right LTPA (lateral tibial plateau angle) and left LTPA, and right 4wTPPA (the tibial proximal posterior angle at 4th week) and left 4wTPPA values were compared with each other. There was a significant difference in MTPA, LTPA, and 4wTPPA in Group 1 (p: 0.003, 0.006, 0.004). In Group 1, the medial and lateral slope significantly decreased after 4 weeks. There was no significant difference in MTPA, LTP and 4wTPPA measurements in Group 2 (p= 0.719, 0.306, 0.446, respectively). In Group 2, the slope did not change in four weeks. There was a significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA (tibial proximal posterior angle at 8th week) in Group 3 (p= 0.005, 0.002, <0.001, <0.001, respectively). In Group 3, the slope decreased at 4th week and remained stabile during the next four week-follow up and no rebound effect was observed. There was no significant difference in MTPA, LTPA, 4wTPPA, and 8wTPPA measurements in Group 4 (p= 0.791, 0.116, 0.232, 0.924), respectively. In group 4, slope did not change at 4th week of index surgery and no rebound effect was observed in the next four week-follow up. Conclusion. If eight plates were placed on anterior of lateral proximal tibia axis on both medial and lateral side, the tibial slope would reduce, and remain stabile after implant removal. Care should be taken to place the plates on the line of proximal tibial axis in sagittal plane in temporary epiphysiodesis technique performed due to angular knee deformities. Changing the slope due to plate placement can be used as a secondary gain for patients who will benefit from slope change, such as adolescent ACL surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 121 - 121
11 Apr 2023
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

To analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. Case-control cross-sectional study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located in T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and expiration. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12), the global T1–T12 ROM were measured. Respiratory function was assess by forced vital capacity (FVC), expiratory volume (FEV1), FEV1/FVC, inspiratory vital capacity (IVC) and peak expiratory flow (PEF). In healthy subjects, the mean T1–T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05) indicating a sagittal stiffness of thoracic spine. A wide T7–T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1–T12 ROM) (p<0.001). There was a significant correlation between T7-T10 ROM and IVC. Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment participating in the deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 90 - 90
1 May 2017
Hevia E Solaz J Barrios C Caballero A Burgos J
Full Access

Background. Oblique implantable total disc replacements (TDR) have been developed in an attempt to partially resect the anterior longitudinal ligament (ALL), together with additional partial resection of lateral annulus fibres. To date, the literature has not addressed the impact of the TDR oblique implantation on the lumbar spine sagittal alignment. The hypothesis of this study was that TDR at the L4-L5 level does not change the sagittal alignment and the range of motion of the lumbar spine when the implant is placed in accurate position. Methods. Prospective single-center radiological investigation of L4/5 TDR inserted through an oblique approach for the treatment of disc disease. A series of 52 patients with a minimum of 2-year FU after oblique TDR at L4/L5 level was analysed for radiological changes in sagittal alignment and range of motion of the lumbar spine. The total sagittal lumbar lordosis (TSLL), the segmental sagittal lumbar lordosis (SSLL) of the operated level, and the range of motion of the TDR implant were determined in pre- and postoperative functional X-rays. The accuracy of the implant position was also evaluated. Results. A total of 52 patients (mean age, 42.7) were available. There were no revision surgeries for general and/or device-related complications. Only a 28.8% of cases (n=15) showed a satisfactory position. Off-center lateralised implants were the most common misplacements. Axial malrotated TDR accounted for the 28.1% of cases. From 3 to 24 months of FU, differences in range of motion were found in the total L1-S1 flexion, and in the mean range of motion of the implant both improving significantly. TDRs showing unsatisfactory implantation in the radiological studies (71.8%) demonstrated similar lumbar and segmental range of motion in comparison to properly implanted TDRs. Conclusions. Oblique implanted L4/L5 TDR significantly increases total lordosis while retaining segmental lordosis, independently of the accuracy of its intervertebral position. Oblique TDR maintains antero-posterior segmental and total balance in most cases. Further studies should evaluate whether this finding has any implication for the long-term outcome. Level of Evidence. Level III


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 94 - 94
1 Apr 2018
Patel A Li L Qureshi A Deierl K
Full Access

Introduction. Hoffa fractures are rare, intra-articular fractures of the femoral condyle in the coronal plane and involving the weight-bearing surface of the distal femur. Surgical fixation is warranted to achieve stability, early mobilisation and satisfactory knee function. We describe a unique type of Hoffa fracture in the coronal plane with sagittal split and intra-articular comminution. There is scant evidence in current literature with regards to surgical approaches, techniques and implants. We report of our case with a review of the literature. Case report. A 40 year old male motorcyclist was involved in a high speed road traffic collision. X-rays confirmed displaced unicondylar fracture of the lateral femoral condyle. CT showed sagittal split of the Hoffa fragment and intra-articular comminution. MRI showed partial rupture of the anterior cruciate ligament. The patient underwent definitive surgical treatment via a midline skin incision and lateral parapatellar approach using cannulated screws, headless compression screws and anti-glide plate. Weightbearing was commenced at 8 weeks. Arthroscopy and adhesiolysis was performed at 12 weeks to improve range of motion. The patient was discharged at one year with a pain-free, functional knee. Discussion. Hoffa fractures are high-energy fractures, often seen in young male motorcyclists with flexed and slightly abducted knee. Most papers recommend surgical fixation, however there is no widely accepted surgical method or rehabilitation regime. Varying surgical approaches, screw direction, choice of implants, and post-operative care have been described. Surgical approach depends on the configuration of the fracture. The medial/lateral parapatellar approach is commonly used as it does not compromise future arthroplasty, but it does not allow access to fix posterior comminution. Arthroscopic-assistance may be used with good outcomes and less tissue dissection. AP screws are widely reported in the literature, most likely due to easier access to the fracture site. PA screws may provide better stability, but access is more difficult. Fixation often involves passing screws through the articular surface, therefore the area damaged should be kept to a minimum by using the smallest possible screw; headless compression screws leave a smaller footprint in the articular cartilage. Locking plate augmentation generally gives good outcomes. Conclusion. Hoffa fractures are rare and difficult to treat. Surgical treatment is the best choice for optimum post-operative knee function. There is no consensus on choice of surgical approaches, techniques and implants, as these are dependent on fracture configuration. In this particular case we emphasise the importance of using an anti-glide plate to address the sagittal component. Despite the need for a secondary procedure, the treatment has had positive outcomes and may be used as a guide for treatment of future Hoffa fractures of a similar sub-type


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 169 - 172
1 Jan 1998
Jorn LP Fridén T Ryd L Lindstrand A

We obtained simultaneous measurements of sagittal knee laxity in 12 consecutive patients after reconstruction of the anterior cruciate ligament (ACL), using the Stryker laxity tester and radiostereometric analysis (RSA). The mean anteroposterior (AP) displacement when a 90 N load was applied in both directions was 5.3 ± 2.7 mm with RSA and 9.8 ± 1.6 mm with the external device (p < 0.001). The corresponding measurements at a load of 180 N were 5.7 ± 2.4 mm and 13.8 ± 3.7 mm, respectively (p < 0.001). More than 50% of the sagittal knee movement, as measured by the external device at a load of 180 N, was not true femorotibial displacement of the joint but was due to soft-tissue deformation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 70 - 70
1 Aug 2012
Monda M McCarthy I Thornton M Smitham P Goldberg A
Full Access

Introduction. Knowledge of knee kinetics and kinematics contributes to our understanding of the patho-mechanics of knee pathology and rehabilitation and a mobile system for use in the clinic is desirable. We set out to assess validity and reliability of ambulatory Inertial Motion Unit (IMU) Sensors (Pegasus¯) against an established optoelectronic system (CODA¯). Pegasus¯ uses inertial sensors placed on subjects' thighs and lower leg segments to directly measure orientation of these segments with respect to gravity. CODA¯) models the position of joint centres based on tracked positions of optical markers placed on a subject, providing 3D kinematics of the subject's hips, knees and ankles in all three planes. Methods. Intra observer reliability of the Pegasus¯ system was tested on 6 volunteers (4 male; 2 female) with no previous lower limb or knee pathology. IMU's were placed on the long axis of the lateral aspects of both thighs and lower leg segments. A test re-test protocol was used with sagittal data angle collected around a standard circuit. Inter-observer reliability was tested by placement of IMU's by 5 different testers on a single volunteer. To test validity, we collected simultaneous sagittal knee angle data from Pegasus¯ and CODA¯ in two subjects. The presence of IMU's did not compromise positioning of optical markers. Results. Analysis of triplicate measurements showed that intra-observer error is +/− 5°. Inter-observer difference in measurements varied from 3° to 20° absolute values. Positional error of the Pegasus¯ IMU's was significant in comparison to CODA¯, with absolute offsets in knee angles typically of 10° to 25°. Range of motion differences between the two systems calculated as root mean square (rms) difference of the zero meaned signals were 3.8°-4.8°. Conclusion. The Pegasus¯ system is useful in ambulatory measurement of the range of knee motion in the sagittal plane. In the current configuration there was poor intra and inter-observer reliability possibly related to positional error using the Pegasus¯ system and may be due to fixation method, operator factors, body shape and variability of clothing. Recommendations have been made to the manufacturer


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 868 - 872
1 Jun 2005
Metcalfe AJ Saleh M Yang L

Biomechanical studies involving all-wire and hybrid types of circular frame have shown that oblique tibial fractures remain unstable when they are loaded. We have assessed a range of techniques for enhancing the fixation of these fractures. Eight models were constructed using Sawbones tibiae and standard Sheffield ring fixators, to which six additional fixation techniques were applied sequentially.

The major component of displacement was shear along the obliquity of the fracture. This was the most sensitive to any change in the method of fixation. All additional fixation systems were found to reduce shear movement significantly, the most effective being push-pull wires and arched wires with a three-hole bend. Less effective systems included an additional half pin and arched wires with a shallower arc. Angled pins were more effective at reducing shear than transverse pins.

The choice of additional fixation should be made after consideration of both the amount of stability required and the practicalities of applying the method to a particular fracture.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 53 - 53
1 Nov 2021
ten Heggeler R Schröder F de Graaf F Fluit R Becea D Verdonschot N Hoogeslag R
Full Access

Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that HTO becomes more accurate with patient specific saw guides (PSGs), with an accuracy margin reported in literature of 2 degrees. This proof of concept porcine cadaver case study aimed to investigate whether the use of PSGs improves the accuracy of HTO to less than 2 degrees. Secondly, the reproducibility of tibial slope measurement was evaluated. Materials and Methods. Preoperative MRI images of porcine cadaver knees (n = 3) were used to create 3D anatomical bone models (Mimics, Materialise, Belgium). These 3D models were subsequently used to develop PSGs (3-Matic, Materialise, Belgium) to correct all tibias for 3 degrees PTS and 4 degrees varus. The PSG mediated HTOs were performed by an experienced orthopaedic surgeon, after which postoperative MRI images were obtained. 3D anatomical models of postoperative tibias were created, and tibial slopes were assessed on both pre- and postoperative tibias. The tibial slope was defined as the angle between the mechanical axis and 3D tibial reference plane in the frontal and sagittal plane. The accuracy of the PSG mediated HTO (median and range) was defined as the difference in all possible combinations of the preoperatively planned and postoperatively obtained tibial slopes. To ensure reproducibility, the pre- and postoperative tibial slopes were measured thrice by one observer. The intra-class correlation coefficients (ICCs) were subsequently calculated to assess the intra-rater reliability (SPSS, IBM Corp., Armonk, N.Y., USA). Results. An accuracy within 2 degrees was achieved in all three cases. The median and range in accuracy for each specimen were +0.46 (−0.57 – 1.45), +0.60 (−1.07 – 1.00), and +0.45 (−0.16 – 0.71) degrees in the frontal plane, and −0.45 (−1.97 – 1.22), −0.80 (−2.42 – 1.77), and 0.00 (−2.19 – 1.93) degrees in the sagittal plane. The pre- and postoperatively planned tibial slopes in the frontal and sagittal plane were measured with a good up to excellent reproducibility. The ICCs of the preoperative planned tibial slopes were 0.82 (95% CI, 0.11 – 1.0), and 0.77 (95% CI, 0.17 – 1.0) for the frontal and sagittal plane, respectively. Postoperative, the ICC for the frontal plane was 0.92 (95% CI, 0.43 – 1.0), and 0.67 (95% CI, −0.06 – 0.99) for the sagittal plane. Conclusions. This proof of concept porcine case study showed an accuracy for the PSG mediated HTO within 2 degrees for each specimen. Moreover, the tibial slopes were measured with a good up to excellent reproducibility. Therefore, the PSG mediated HTO seems to be accurate and might be better than the current used free-hand HTO method. These results offer perspective for implementation of PSG mediated HTO to correct PTS and metaphyseal varus


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 41 - 41
4 Apr 2023
Benca E Zderic I van Knegsel K Caspar J Hirtler L Fuchssteiner C Strassl A Gueorguiev B Widhalm H Windhager R Varga P
Full Access

Odontoid fracture of the second cervical vertebra (C2) is the most common spinal fracture type in elderly patients. However, very little is known about the biomechanical fracture mechanisms, but could play a role in fracture prevention and treatment. This study aimed to investigate the biomechanical competence and fracture characteristics of the odontoid process. A total of 42 human C2 specimens (14 female and 28 male, 71.5 ± 6.5 years) were scanned via quantitative computed tomography, divided in 6 groups (n = 7) and subjected to combined quasi-static loading at a rate of 0.1 mm/s until fracturing at inclinations of −15°, 0° and 15° in sagittal plane, and −50° and 0° in transverse plane. Bone mineral density (BMD), specimen height, fusion state of the ossification centers, stiffness, yield load, ultimate load, and fracture type according to Anderson and d'Alonzo were assessed. While the lowest values for stiffness, yield, and ultimate load were observed at load inclination of 15° in sagittal plane, no statistically significant differences could be observed among the six groups (p = 0.235, p = 0.646, and p = 0.505, respectively). Evaluating specimens with only clearly distinguishable fusion of the ossification centers (n = 26) reveled even less differences among the groups for all mechanical parameters. BMD was positively correlated with yield load (R² = 0.350, p < 0.001), and ultimate load (R² = 0.955, p < 0.001), but not with stiffness (p = 0.070). Type III was the most common fracture type (23.5%). These biomechanical outcomes indicate that load direction plays a subordinate role in traumatic fractures of the odontoid process in contrast to BMD which is a strong determinant of stiffness and strength. Thus, odontoid fractures appear to result from an interaction between load magnitude and bone quality


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 60 - 60
1 Dec 2021
Rai A Khokher Z Kumar KHS Kuroda Y Khanduja V
Full Access

Abstract. Introduction. Recent reports show that spinopelvic mobility influences outcome following total hip arthroplasty. This scoping review investigates the relationship between spinopelvic parameters (SPPs) and symptomatic femoroacetabular impingement (FAI). Methods. A systematic search of EMBASE, PubMed and Cochrane for literature related to SPPs and FAI was undertaken as per PRISMA guidelines. Clinical outcome studies and prospective/retrospective studies investigating the role of SPPs in symptomatic FAI were included. Review articles, case reports and book chapters were excluded. Information extracted pertained to symptomatic cam deformities, pelvic tilt, acetabular version, biomechanics of dynamic movements and radiological FAI signs. Results. The search identified 42 papers for final analysis out of 1168 articles investigating the link between SPPs and pathological processes characteristic of FAI. Only one (2.4%) study was of level 1 evidence, five (11.9%) studies) were level 2, 17 (40.5%) were level 3 and 19 (45.2%) were level 4. Three studies associated FAI pathology with a greater pelvic incidence (PI), while four associated it with a smaller PI. Anterior pelvic tilt was associated with radiographic overcoverage parameters of FAI. In dynamic movements, decreased posterior pelvic tilt was a common feature in symptomatic FAI patients at increased hip flexion angles. FAI patients additionally demonstrated reduced sagittal pelvic ROM during dynamic hip flexion. Six studies found kinematic links between sagittal spinopelvic movement and sagittal and transverse plane hip movements. Conclusions. Our study shows that spinopelvic parameters can influence radiological and clinical manifestations of FAI, with pelvic incidence, acetabular version and muscular imbalances being aetiologically implicated. These factors may be amenable to non-surgical therapy. Individual spinopelvic mechanics may predispose to the development of FAI. If FAI pathoanatomy already exists, sagittal pelvic parameters can influence whether FAI symptoms develop and is an area of further research interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 90 - 90
1 Nov 2021
Kowalski E Catelli D Lamontagne M Dervin G
Full Access

Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the variance in knee biomechanics variables at each interval of the gait cycle. Results. Preoperatively, the PS group had greater sagittal knee angle variability compared to the MP (32–58% gait cycle) and CTRL (21–53% gait cycle) groups. Postoperatively, no difference in sagittal knee angle variability existed between any of the groups. Preoperatively, sagittal knee moment variability was greater in the MP (2–39% gait cycle) and PS (5–19% and 42–57% gait cycle) groups compared to the CTRL. Postoperatively, sagittal knee moment was lower in the MP (49–55% gait cycle) and greater in the PS (23–36% gait cycle) compared to the CTRL. Knee power variability was greater preoperatively in the MP (52–61% gait cycle) and PS (52–62% gait cycle) compared to the CTRL. Postoperatively, knee power variability was lower in the MP (17–22% and 45–50% gait cycle) and PS (6–23%, 34–41% and 45–49% gait cycle) compared to the CTRL group. Conclusions. Preoperatively, knee OA patients have greater variability in knee moments than CTRLs during the transition from double-limb support to single-limb support on the affected limb. This indicates knee instability as patients are adopting a gait strategy that refers to knee muscle contraction avoidance. The MP group showed greater knee stability postoperatively as they had lower knee moment and power variability compared to the CTRL. The significance of having less variability than CTRLs is not well understood at this time. Future research on muscle activity is needed to determine if neuromuscular adaptations are causing these reductions in variability after TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 46 - 46
1 Dec 2021
Yarwood W Kumar KHS Ng KCG Khanduja V
Full Access

Abstract. Purpose. The aim of this study was to assess how biomechanical gait parameters (kinematics, kinetics, and muscle force estimations) differ between patients with camtype FAI and healthy controls, through a systematic search. Methods. A systematic review of the literature from PubMed, Scopus, and Medline and EMBASE via OVID SP was undertaken from inception to April 2020 using PRISMA guidelines. Studies that described kinematics, kinetics, and/or estimated muscle forces in cam-type FAI were identified and reviewed. Results. The search strategy identified 404 articles for evaluation. Removal of duplicates and screening of titles and abstracts resulted in full-text review of 37 articles with 12 meeting inclusion criteria. The 12 studies reported biomechanical data on a total of 173 cam-FAI (151 cam specific, 22 mixed type) patients and 177 healthy age, sex and BMI matched controls. Cam FAI patients had reduced hip sagittal plane ROM (Mean difference −3.00 0 [−4.10, −1.90], p<0.001), reduced hip peak extension angles (Mean Difference −2.05 0[−3.58, −0.53], p=0.008), reduced abduction angles in the terminal phase of stance, and reduced iliacus and psoas muscle force production in the terminal phase of stance compared to the control groups. Cam FAI cohorts walked at a slower speed compared to controls. Conclusions. In conclusion, patients with cam-type FAI exhibit altered sagittal and frontal plane kinematics as well as altered muscle force production during level gait compared to controls. These findings will help guide future research into gait alterations in FAI and how such alterations may contribute to pathological progression and furthermore, how such alterations can be modified for therapeutic benefit


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 54 - 54
2 Jan 2024
İlicepinar Ö Imir M Cengiz B Gürses S Menderes Y Turhan E Dönmez G Korkusuz F
Full Access

Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT). Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a force plate (Bertec, Inc, USA). The ROM of the knee joint and the DAOR were obtained from kinematic data. Participants' joint kinematics metrics were similar in within-subjects statistical tests for SLH and COHT. We therefore asked whether the repeated vGRF normalized to body weight will be similar in both legs during these jumps. Joint kinematics metrics however were different in between subjects indicating the existence of a personalized jumping strategy. These hop tests can be recorded at the beginning of the training season for each individual, which can establish a comparative evaluation database for prospective lower extremity injury recovery and return to sport after ACL injury