Advertisement for orthosearch.org.uk
Results 1 - 20 of 24
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 292 - 292
1 Jul 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A
Full Access

Summary. Metal-on-metal hip replacements have been associated with adverse reactions including inflammatory pseudotumours and soft tissue necrosis. We have shown that cobalt can directly activate toll-like receptor 4, an immune receptor causing pro-inflammatory interleukin-8 secretion. This may contribute to adverse reaction development. Introduction. Metal-on-metal hips have the highest failure rate of any joint arthroplasty material. Reasons for failure include the development of pseudotumours, soft tissue necrosis and pain around the affected joint. The adverse reactions appear to be inflammatory as failing joints are often infiltrated by immune cells such as lymphocytes. However the exact cellular and biological mechanisms underlying this inflammation are unknown. Toll-like receptor 4 (TLR4) is found on the surface of immune cells including macrophages and dendritic cells. It is activated by lipopolysaccharide (LPS) from Gram negative bacteria, inducing an immune response against the pathogen through increased secretion of pro-inflammatory cytokines. It has recently been shown that nickel can activate TLR4, causing inflammation. Cobalt, a component of many metal-on-metal joints, is adjacent to nickel in the periodic table and shares a number of nickel's properties. Consequently we hypothesised that cobalt ions from metal-on-metal joints can activate TLR4. Methods. An in vitro cell culture model was developed using human and murine TLR4 reporter cell lines to investigate the effects of metal ions, including cobalt, on TLR4. Real-time PCR was used to examine the effect of cobalt on inflammatory gene expression, including IL-8, CCL-2 and IRAK-2, while an ELISA assay was conducted to investigate IL-8 protein expression in a human macrophage cell line (MonoMac 6). The TLR4 agonist LPS was included as a positive control and as a negative control TLR4 activation was blocked using the chemical agonist CLI-095 (Invivogen, UK). Results. Using human TLR4 reporter cells we show that cobalt at clinically-relevant concentrations can activate human TLR4. This effect appears unique to humans as murine TLR4 is unresponsive to cobalt but still responds to LPS. We also demonstrate that in human macrophages physiologically-relevant concentrations of cobalt cause increased pro-inflammatory IL-8 secretion (p<0.001). IL-8 is involved in perpetuating the immune response by recruiting more inflammatory cells to the site of inflammation. Cobalt-induced IL-8 secretion can be blocked using a TLR4 antagonist (p<0.001) showing that the effect is due to cobalt activation. Cobalt ions also alter gene expression in human macrophages. Cobalt upregulates expression of IL-8 and IRAK2 genes; IRAK2 is a key component of the TLR4 signalling pathway. Interestingly, cobalt causes downregulation of the CCL2 gene whereas it is upregulated in response to LPS. Discussion. In this study we have demonstrated that cobalt ions can activate human TLR4 signalling and in human macrophages this can increase expression of pro-inflammatory IL-8. We have also developed a robust series of assays for determining the effects of metal ions and other orthopaedic materials on the TLR4 signalling pathway. These methods will be used to investigate the immunological effects of additional orthopaedic metals (e.g. chromium, titanium and molybdenum). This work has identified a key pathway involved in the immune response to metal ions which can now be investigated for genetic variability and as a potential therapeutic target


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 144 - 144
1 May 2011
Szczesny G Olszewski W Swoboda-Kopec E Zagozda M Czapnik Z Interewicz B Stachyra E Maziarz M Gorecki A
Full Access

We previously reported the presence of the bacterial genetic material (16S rRNA) and viable pathogens in fracture gaps specimens, which suggests an impaired pathogen recognition and/or elimination. The aim of study was to validate the hypothesis that patients with delayed bone fracture healing express the higher frequency of TLR4 mutations. Observations were performed in 295 patients treated due to closed fractures of the long bones of the lower extremity; in 151 with delayed bone union (Group A), and in 144 with uneventful healing (Group B). Control group consisted of 125 healthy blood donors from ethnically the same as investigations groups polish population. Fracture gaps and deep tissue biopsies served for microbiological studies, and DNA isolated from venous blood leukocytes was used for analysis of mutations of TLR4 gene at Asp299Gly (1/W) and Thr399Ile (2/W). Results: Microbiological studies revealed positive isolates in 31.5% fracture gaps in Group A and 16.4% in Group B (p< 0.05). The most frequent isolates were S. epidermidis, S. aureus and S. warneri, capitis, sciuri and lentus, in lower percentage micrococci and enterococci. Amplification of 16S rRNA was positive in 56.8 and 65.2% of fracture gaps in both groups respectively. The frequency of occurrence of 1/W was significantly higher (p< 0.05) in subgroups of patients with non-healing infected vs. sterile fractures. In all subgroups with viable pathogens isolated from fracture gaps the frequency of 1/W allele was higher when compared with subgroups, where fracture gaps occurred sterile. Discussion: Performed investigations supported our previously reported observations that gaps of closed bone fractures are not sterile and are positive for 16S rRNA. Genetic predisposal to infection and inflammatory response evoked by a single TLR4 mutation may be one of the factors affecting bone union. Observed coexistence of bacterial colonization with decreased inflammatory reaction observed in individuals bearing TLR4 mutations have to be mentioned as a possible, etiologic factor responsible for delayed healing


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1172 - 1177
1 Sep 2014
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A

Abnormal wear of cobalt-containing metal-on-metal joints is associated with inflammatory pseudotumours. Cobalt ions activate human toll-like receptor 4 (TLR4), which normally responds to bacterial lipopolysaccharide (LPS) in sepsis. Activation of TLR4 by LPS increases the expression of chemokines IL-8 and CXCL10, which recruit leukocytes and activated T-cells, respectively. This study was designed to determine whether cobalt induces a similar inflammatory response to LPS by promoting the expression of IL-8 and CXCL10. A human monocytic cell line, derived from acute monocytic leukaemia, was treated with cobalt ions and expression of IL-8 and CXCL10 measured at mRNA and protein levels. Cobalt-treated macrophages showed a 60-fold increase in IL-8 mRNA, and an eightfold increase in production of the mature chemokine (both p < 0.001); expression of the CXCL10 gene and protein was also significantly increased by cobalt (both p < 0.001). Experiments were also performed in the presence of CLI-095, a TLR4-specific antagonist which abrogated the cobalt-mediated increase in IL-8 and CXCL10 expression.

These findings suggest that cobalt ions induce inflammation similar to that observed during sepsis by the simultaneous activation of two TLR4-mediated signalling pathways. These pathways result in increased production of IL-8 and CXCL10, and may be implicated in pseudotumour formation following metal-on-metal replacement.

Cite this article: Bone Joint J 2014; 96-B:1172–7.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 6 - 6
4 Apr 2023
Jamieson S Mawdesley A Hyde P Kirby J Tyson-Capper A
Full Access

Total hip replacement (THR) is indicated for patients with osteoarthritis where conservative treatment has failed. Metal alloys used in THR implants such as cobalt-chromium (CoCr) have been known to cause pro-inflammatory reactions in patients, therefore leading to the need for costly revision surgery. This study therefore aimed to investigate the role of TLR4 in the activation of a human osteoblast model in response to CoCr particles in vitro. Human osteoblasts (MG-63 cell line) were seeded at a density of 100,000 cells and treated with 0.5, 5, 50mm3 CoCr particles per cell for 24-hours. Trypan blue and the XTT Cell Proliferation Kit II were then used in conjunction with the cells to assess CoCr-induced cytotoxicity. Cells were pre-treated with a commercially available TLR4-specific small molecule inhibitor (CLI-095) for 6 hours. Untreated cells were used as a negative control and lipopolysaccharide (LPS) was used as a positive control. Following treatment the cell supernatant was collected and used for enzyme-linked immunosorbant assay (ELISA) to measure the secretion of interleukin-8 (IL-8), CXCL10, and interleukin-6 (IL-6). Trypan blue and XTT analysis showed that there was no significant changes to cell viability or proliferation at any dose used of CoCr after 24 hours. There was a significant increase in protein secretion of IL-8 (p<0.001), CXCL10 (p<0.001), and IL-6 (p<0.001) in the cells which received the highest dosage of CoCr. This pro-inflammatory secretory response was ameliorated by TLR4 blockade (p<0.001). CoCr particles are not cytotoxic to osteoblasts but they do induce pro-inflammatory changes as characterised by increased secretion of chemokines IL-8, CXCL10, and IL-6. These responses occur via a TLR4-mediated pathway and upon inhibition they can be effectively ameliorated. This is particularly important as TLR4 could be a potential target for pharmacological intervention used in patients experiencing immunological reactions to metal implant debris


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 25 - 25
7 Aug 2024
Nüesch A Kanelis E Alexopoulos L Williams F Geris L Gantenbein B Lacey M Breakwell L Maitre CL
Full Access

Introduction. Multiple studies have identified Cutibacterium acnes (C.acnes) and other microbes in intervertebral disc tissue using 16S DNA Sequencing and microbial cultures. However, it remains unclear whether these bacteria are native to the discs or result from perioperative contamination. Our study aimed to detect Gram-positive bacteria in non-herniated human disc samples and explore correlations with Toll-like receptors (TLR) 2, TLR4, NLRP3, and Gasdermin D. Methods. Immunohistochemical staining was conducted on 75 human IVD samples for Gram-positive bacteria, S. aureus, C.acnes, TLR2, TLR4, NLRP3, and Gasdermin D. Cell detection and classification were performed using QuPath. NP cells were treated with Lipopolysaccharide (LPS) and Peptidoglycan (PGN) in monolayer and alginate beads for up to 72 hours, followed by secretome analysis using Luminex. Statistical analysis included Kruskal-Wallis, Dunn's multiple comparison test, and Pearson correlation. Results. Immunohistochemical staining revealed Gram-positive bacteria exclusively within cells, with C. acnes positivity ranging from 5–99% and correlating with patient age (r=0.41, p= 0.007). TLR2 positivity ranged from 5–99% and TLR4 from 3–72%, showing a strong correlation (r= 0.62, p= 1.5e-006). Females with mid-degenerative grades exhibited significantly decreased TLR2 expression compared to those without degeneration signs. Treatment with LPS and PGN increased catabolic cyto- and chemokines associated with IVD degeneration. Conclusion. In conclusion, this study confirms Gram-positive bacteria presence in non-herniated human disc samples and highlights their role in triggering a catabolic response in disc cells. No conflicts of interest.  . Sources of funding. This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 19 - 19
4 Apr 2023
Manukyan G Gallo J Mikulkova Z Trajerova M Savara J Slobodova Z Kriegova E
Full Access

An increased number of neutrophils (NEUs) has long been associated with infections in the knee joints; their contribution to knee osteoarthritis (KOA) pathophysiology remains largely unexplored. This study aimed to compare the phenotypic and functional characteristics of synovial fluid (SF)-derived NEUs in KOA and knee infection (INF). Flow cytometric analysis, protein level measurements (ELISA), NEU oxidative burst assays, detection of NEU phagocytosis (pHrodo. TM. Green Zymosan Biparticles. TM. Conjugate for Phagocytosis), morphological analysis of the SF-derived/synovial tissue NEUs, and cultivation of human umbilical vein endothelial cells (HUVECs) using SF supernatant were used to characterise NEUs functionally/morphologically. Results: Compared with INF NEUs, KOA NEUs were characterised by a lower expression of CD11b, CD54 and CD64, a higher expression of CD62L, TLR2 and TLR4, and lower production of inflammatory mediators and proteases, except CCL2. Functionally, KOA NEUs displayed an increased production of radical oxygen species and phagocytic activity compared with INF NEUs. Morphologically, KOA and INF cells displayed different cell sizes and morphology, histological characteristics of the surrounding synovial tissues and influence on endothelial cells. KOA NEUs were further subdivided into two groups: SF containing <10% and SF with 10%–60% of NEUs. Analyses of two KOA NEU subgroups revealed that NEUs with SF <10% were characterised by 1) higher CD54, CD64, TLR2 and TLR4 expression on their surface; 2) higher concentrations of TNF-α, sTREM-1, VILIP-1, IL-1RA and MMP-9 in SFs. Our findings reveal a key role for NEUs in the pathophysiology of KOA, indicating that these cells are morphologically and functionally different from INF NEUs. Further studies should explore the mechanisms that contribute to the increased number of NEUs and their crosstalk with other immune cells in KOA. This study was supported by the Ministry of Health of the Czech Republic (NU20-06-00269; NU21-06-00370)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 23 - 23
1 Apr 2017
Lawrence H Deehan D Holland J Kirby J Tyson-Capper A
Full Access

Background. Metal-on-metal (MoM) hip arthroplasty has been associated with adverse reactions including pseudotumours, and osteolysis. Tissues surrounding failed MoM hip implants are often infiltrated by inflammatory cells such as monocytes and neutrophils. The mechanisms by which these cells are recruited to the tissues remain unclear. Cobalt from MoM implants activates Toll-like receptor 4 (TLR4), an immune cell surface receptor usually responsible for recognition of bacteria and prevention of sepsis. Activation by bacteria leads to secretion of pro-inflammatory cytokines which guide other immune cells to the site of inflammation. The effect of cobalt on this response is unknown and therefore this study aims to determine the effect of cobalt-mediated TLR4 activation on the migration of inflammatory cells. Methods. A human macrophage cell line (MonoMac 6) was stimulated with a physiologically-relevant range of cobalt ions for 24h with or without pre-treatment with a TLR4 antagonist. Conditioned media was collected and used in a trans-well migration assay to determine its effect on migration of primary monocytes and neutrophils isolated from whole human blood. Migrated cells were stained with haematoxylin and counted at ×40 magnification. Results. Conditioned media from cobalt-treated macrophages caused elevated monocyte and neutrophil migration across all concentrations. Pre-treatment of MonoMac 6 cells with a TLR4 antagonist significantly decreased the response. This suggests that the cytokine profile produced in response to cobalt-mediated TLR4 activation is pro-migratory for immune cells. Conclusions. Cobalt activation of TLR4 leads to secretion of inflammatory cytokines that attract monocytes and neutrophils. This work highlights a potential mechanism by which cobalt ions from failed MoM joints could be involved in inflammatory cell recruitment to the surrounding tissues. The TLR4 signalling pathway represents an exciting area for further investigation as a therapeutic target in the prevention of adverse reactions to cobalt ions. Disclosure. This work is funded by DePuy Synthes Ltd and the Newcastle NIHR Biomedical Research Centre


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2019
Mawdesley A Tyson-Capper A Kirby J Tipper JL
Full Access

Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines/chemokines e.g. CCL3 and CCL4. The aim of this study was to evaluate whether TLR4-specific neutralising antibodies can prevent cobalt-mediated activation of TLR4. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with two different TLR4-specific monoclonal antibodies followed by 0.75mM of cobalt chloride (CoCl2). Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess CCL3/CCL4 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of CCL3/CCL4 gene expression. MM6 cells treated with cobalt and LPS up-regulate CCL3 and CCL4 gene expression and protein secretion. MM6 cells pre-treated with both monoclonal antibodies prior to stimulation with 0.75mM CoCl2 for 16 hours demonstrated significant inhibition of both CCL3 and CCL4 secretion as well as gene expression (both p=<0.0001). One of the antibodies failed to inhibit chemokine expression and secretion in LPS treated cells. This study identifies for the first time the use of TLR4-specific monoclonal antibodies to prevent cobalt activation of TLR4 and subsequent inflammatory response. This finding demonstrates the potential to exploit TLR4 inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to reduce the incidence of ARMD


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 12 - 12
1 Nov 2021
Anjum S Jamieson S Deehan D Kirby J Tyson-Capper A
Full Access

Introduction and Objective. Total joint replacement is indicated for osteoarthritis where conservative treatment has failed, and in the UK the number of patients requiring hip and knee replacements is set to increase with an ageing population. Survival of total hip replacements is around 85% at 20 years with the most common reason for revision being aseptic loosening of the implant secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can also cause pseudotumour formation. As revision surgery is associated with higher morbidity, mortality, infection rates, venous thromboembolism, resource demand and poorer subsequent function it is important to understand the mechanisms underlying the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4), an innate immune receptor, has been demonstrated to mediate deleterious immune responses by the Tyson-Capper research group, including inflammatory cytokine interleukin-8 (IL-8) secretion. Statin use in epidemiological studies has been associated with reduced overall risk of revision surgery after hip replacement. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses which can lead to osteolysis and pseudotumour formation. As literature from cardiological investigations demonstrate that statins can reduce the expression and responsiveness of TLR4, this could be an exciting mechanism to exploit to reduce the host immune response to orthopaedic wear debris, thereby improving implant survival by reducing immune mediated osteolysis. This ongoing study investigates simvastatin's effect on cobalt ion-mediated changes in gene and protein expression of interleukin-8 and soluble-ICAM-1 (sICAM-1) which is an angiogenic factor implicated in pseudotumour formation. Materials and Methods. TLR4-expressing human monocyte/macrophage THP-1 cells were pre-incubated with 50μM simvastatin for 2-hours or a vehicle control, before being exposed to exposed to 0.75mM cobalt chloride, in addition to a further 24-hour co-incubation with 50μM simvastatin or vehicle control. IL-8 protein and sICAM-1 secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Pre-treatment with simvastatin significantly reduced cobalt-mediated IL-8 protein secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells (p-value<0.0001). Work will be undertaken to determine changes in gene expression, the role of TLR4 in these responses and the effect of simvastatin on additional inflammatory markers. Conclusions. Simvastatin significantly reduces cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving aseptic loosening and pseudotumour formation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation. Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA. Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3). Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 6 - 6
1 Dec 2015
Kostopoulou F Papathanasiou I Anastasopoulou L Aidarinis C Mourmoura E Malizos K Tsezou A
Full Access

Toll-like receptors (TLRs) are crucial components of the immune system that recognize microbial infection and trigger anti-microbial host defense responses. Gram positive bacteria are causative factors of bone infections, as they alter the balance of coordinated activities during bone remodeling, stimulating osteoclastogenesis. The aim of the study was to investigate whether genetic variation in TLR2 and TLR4 genes predisposes to bone infections’ susceptibility. One hundred and twenty patients with bone infections (osteomyelitis) and 200 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs), R753Q [A/G] in TLR2 gene and T399I [C/T] in TLR4 gene. DNA was extracted from whole blood and the above SNPs were typed with PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) method for genotype identification. All patients were infected by Gram-positive bacteria, predominantly Staphylococcus aureus. Statistical analysis was carried out using the chi-square test. We observed a significantly increased frequency in patients carrying the GA genotype of TLR2 R753Q polymorphism compared to controls (p<0.05). We also found that the A allele was more common in patients than in controls. All individuals carrying the A allele were heterozygous for this variant, while homozygous mutant individuals were not detected in the patients and the control group. In contrast, we found that the TLR4 T399I [C/T] SNP was similarly distributed among the two groups (patients and controls). The mechanism through which TLR2 mediates its effect in bone infections is under investigation. A significant difference was observed in the genotype frequency of TLR2 R753Q [A/G] polymorphism in patients, suggesting that genetic variability in TLR2 gene may be associated with susceptibility to osteomyelitis in response to bacterial invasion in the bone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 70 - 70
1 May 2017
Anjum S Mawdesley A Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Adverse reactions to metal debris are implicated in the failure of metal-on-metal hip arthroplasty. The peri-implant tissues are often infiltrated by leukocytes which may cause observed immunological effects, including soft tissue necrosis and osteolysis. Cobalt ions from orthopaedic implants aberrantly activate the innate immune receptor human toll-like receptor-4 (TLR4), leading to inflammatory cytokine release including interleukin-8 (IL-8). IL-8 has been shown to increase expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These factors are essential for leukocyte adhesion to endothelium, which is required for leukocyte migration into tissues. This study investigates cobalt's effect on gene and protein changes in IL-8, ICAM-1 and VCAM-1 to determine their potential role in immune cell infiltration of peri-implant tissues. Methods. TLR4-expressing human dermal microvascular endothelial cells (HMEC-1) were treated with a range of clinically relevant cobalt ion concentrations. IL-8 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression changes were quantified by TaqMan-based real time polymerase chain reaction. Results. Stimulation with cobalt ions significantly increases IL-8 secretion (n=3) in HMEC-1 cells. This is a TLR4-specific effect as a small molecule TLR4 antagonist inhibited cobalt-induced IL-8 secretion. Following cobalt treatment (0.75mM cobalt chloride) there is a 12-fold increase in ICAM-1 (p-value=0.0004) and a 6-fold increase in VCAM-1 (p-value<0.0001) gene expression. Work will be undertaken to determine the role of TLR4 in these responses. Conclusion. Cobalt increases IL-8 secretion and adhesion molecule gene expression in HMEC-1 cells. This in vitro finding demonstrates the potential for cobalt ions to increase leukocyte adhesion to the endothelial surface. This may contribute to leukocyte infiltration of peri-implant tissues in metal-on-metal hip arthroplasty failure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 10 - 10
1 May 2017
Mawdesley A Anjum S Lawrence H Deehan D Kirby J Tyson-Capper A
Full Access

Background. Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). ARMD describes numerous symptoms in patients such as pain, osteolysis and soft tissue damage. Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines e.g. interleukin-8 (IL-8). This study investigates whether TLR4-specific antagonists inhibit the inflammatory response to cobalt using IL-8 gene expression and protein secretion as a marker of TLR4 activation. Methods. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with TLR4-specific antagonists followed by 0.75mM of cobalt chloride. Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess IL-8 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of IL-8 gene expression. Results. MM6 cells treated with cobalt and LPS up-regulate IL-8 gene expression and protein secretion (n=3). The addition of TLR4-specific antagonists significantly inhibits this up-regulation suggesting the observed effects are TLR4-mediated. MM6 cells stimulated with cobalt (0.75mM) for 16 hours demonstrated a 27-fold increase in IL-8 gene expression (p-value = < 0.0001). When pre-treated with 10μg/ml of a TLR4-specific antagonist fold increase decreased to 6-fold (p-value = < 0.0001). IL-8 secretion decreased from 5000pg/ml to 3000pg/ml (p-value = < 0.0001). Conclusion. TLR4-specific antagonists inhibit cobalt-mediated IL-8 gene expression and protein secretion in MM6 cells. This finding demonstrates the potential to exploit this inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to improve MoM implant longevity, reduce the incidence of ARMD and prevent subsequent revision surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 57 - 57
1 Mar 2012
Okazaki S Matsumoto H Nagoya S Kaya M Sasaki M Tateda K Kosukegawa I Yamashita T
Full Access

Introduction. Although osteonecrosis of the femoral head has been observed in young adult patients with autoimmune diseases such as SLE and MCTD that are treated by corticosteroids, the pathogenesis of the osteonecrosis remains unclear. We established a rat model with osteonecrosis of the femoral head by injecting lipopolysaccharide (LPS) and corticosteroid, and assessed consequences of the histopathological alteration of the femoral head, the systemic immune response, and the lipid synthesis. Methods. Male Wistar rats were given 2 mg/kg LPS intravenously on days 0 and 1 and intramuscularly 20 mg/kg methylprednisolone on days 2, 3, and 4. The animals were sacrificed 1, 2, 3, or 4 weeks after the last injection of the methylprednisolone. Histopathological and biochemical analyses were performed every week. The bone samples were then processed for routine hematoxylin and eosin staining to assess the general architecture and injury of the tissue. The triglyceride and the total cholesterol concentrations in the PRP were measured. The levels of various cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ, TNF-α) in blood samples were measured. Results. The body weight of the rats over time decreased for 2 weeks but had recovered by week 4. The plasma triglyceride concentrations had decreased significantly by weeks 2 and 3. The total plasma cholesterol concentrations had increased significantly by week 1 but then decreased significantly by week 4. The plasma concentrations of IL-1?α, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ and TNF-α had increased significantly by week 1. These cytokines can all be induced by toll-like receptor 4 (TLR4) signaling. We defined osteonecrosis as the diffuse presence of empty lacunae or pyknotic nuclei of osteocytes in the bone trabeculae, accompanied by surrounding bone marrow cell necrosis. Osteonecrosis of the femoral head was observed only in the epiphysis of the femoral head in sacrificed specimen every week. Histological analysis revealed osteocytic death surrounded by necrotic bone marrow with or without repaired tissue. Conclusion. We established a new rat model of corticosteroid-induced femoral head osteonecrosis. The necrosis that is generated in this model is similar to that seen in patients treated with corticosteroid. In particular, the necrotic lesion was exclusively observed in the proximal epiphysis. LPS is known to activate the immune system via the TLR4 signaling pathway. It has been recognized that the unique immunogenic effects of LPS promote autoimmune disease . LPS and methylprednisolone induced osteonecrosis of the femoral head in rats and this was associated with a disruption of the innate immune system and lipid synthesis. These findings suggest that the TLR4 signaling pathway plays an important role in the pathogenesis for osteonecrosis of the femoral head


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 13 - 13
1 Dec 2013
Bechtel C Gebhart J Tatro J Schluchter M Wilkinson JM Greenfield E
Full Access

Introduction:. Wear particles cause aseptic loosening by stimulating macrophages to produce inflammatory cytokines. Recent studies indicate that Toll-like receptor 2 (TLR2) and TLR4 mediate macrophage responses to the wear particles [1–3]. TLR2 and TLR4 uniquely activate MyD88-dependent signaling via an additional adapter protein known as TIRAP/Mal [4]. Del Vescovo et al reported that three single nucleotide polymorphisms (SNPs) within the TIRAP/Mal gene associate with aseptic loosening in THA patients [5]. The goal of the current study was therefore to determine whether TIRAP/Mal mediates responses to orthopaedic wear particles. Methods:. Immortalized wild type (WT) and TIRAP/Mal knockout (KO) murine macrophages (Mfs) were incubated in the presence or absence of titanium (Ti) particles (1 × 10. 8. particles/cm. 2. [2]. Three types of particles were used as described previously [1,2]: Ti particles with adherent bacterial debris (38.3 Endotoxin Units/10. 9. particles), endotoxin-free Ti particles (<0.1 EU/10. 9. particles), and Ti particles with adherent lipopolysacharide (LPS, 32.8 EU/10. 9. particles). TNFa, IL-1b, and IL-6 mRNAs were measured by real-time PCR and the secreted cytokines were measured by ELISA. Particle-induced osteolysis in calvaria of TIRAP/Mal KO and WT mice was measured 7 days after particle implantation [1,2]. In vitro results are presented as mean ± SEM of 3–4 replicate experiments analyzed by two-way ANOVA with Bonferroni post-hoc corrections. In vivo results are presented as means of individual parietal bones ± SEM (n = 22) and analyzed by one-way ANOVA on ranks with Student Neuman-Keuls post-hoc corrections. * denotes p < 0.5, ** denotes p < 0.01, *** denotes p < 0. Results:. Ti particles with adherent bacterial debris induced substantial osteolysis and expression of TNFa, IL-1b, and IL-6 at both the mRNA and protein levels and all of those responses were significantly inhibited by TIRAP/Mal KO (Fig 1 & Fig 2). Endotoxin-free Ti particles had a small effect on osteolysis and cytokine mRNA expression that was not dependent on TIRAP/Mal (Fig 1 & data not shown). Adherence of highly purified LPS to the endotoxin-free particles reconstituted the stimulation of osteolysis and cytokine expression as well as the dependence on TIRAP/MAL (Fig 1 & data not shown). Specificity of the effects of TIRAP/Mal KO was demonstrated since responses induced by recombinant murine IL-1b were unaffected (data not shown). Discussion:. Our results are the first demonstration that TIRAP/Mal mediates effects of orthopaedic wear particles. TIRAP/Mal KO inhibited expression of TNFa by ∼50% and almost completely inhibited particle-induced osteolysis, as well as expression of IL-1b and IL-6. Our results, coupled with the genetic association of SNPs in human TIRAP/Mal with aseptic loosening [5], lead to two conclusions. First, activation of TIRAP/Mal likely contributes to aseptic loosening in patients. Second, pathogen-associated molecular patterns (PAMPs) also likely contribute to aseptic loosening since the results with endotoxin-free Ti particles demonstrate that adherent PAMPs are required for activation of TIRAP/Mal


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 60 - 60
1 Nov 2018
Raman S Mancuso P Murphy M
Full Access

Human synovium harbours macrophages and T-cells that secrete inflammatory cytokines, stimulating chondrocytes to release proteinases like aggrecanases and matrix metalloproteinases (MMPs) during the development of Osteoarthritis (OA). Inflammation of the synovium is a key feature of OA, linked to several clinical symptoms and the disease progression. As a prelude to testing in an OA mouse model, we have used the tetracycline system (Tet) to modify mouse mesenchymal stem cells (mMSCs) to over-express viral interleukin 10 (vIL10), an anti-inflammatory cytokine, to modulate the osteoarthritic environment and prevent disease development. MSCs isolated from the marrow of C57BL/6J mice expressed CD90.2, SCA-1, CD105, CD140a, and were negative for CD34, CD45 and CD11b by flow cytometry. Adenoviral transduction of MSCs carrying CMVIL10 and TetON as test, and untransduced, AdNull and TetOFF as negative controls was successful and tightly controlled vIL10 production was demonstrated by CMVIL10 and TetON MSCs using a vIL10 ELISA kit. Co-incubation of vIL10MSC CM with lipopolysaccharide activated bone-marrow derived murine macrophages (BMDMs) resulted in reduction of TNF-α, IL-6 levels and elevated production of IL-10 by ELISA and high iNOS release by Griess assay. Co-culture of active macrophages with TetON MSCs, resulted in polarisation of macrophage cell population from M1 to M2 phase, with decrease in pro-inflammatory MHC-II (M1 marker) and increase in regulatory CD206 (M2 marker) expression over time. The PCR profiler array on MSC CM treated BMDMs, also showed changes in gene expression of critical pro-inflammatory cytokines and receptors involved in the TLR4 pathway. The biscistronic TetON transduced MSCs proved to be most immuno-suppressive and therefore feasible as efficient anti-inflammatory therapy that can utilised in vivo


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 76 - 76
1 Dec 2016
Fillerova R Petrackova A Gajdos P Kudelka M Kriegova E Gallo J
Full Access

Aim. The diagnosis of periprosthetic joint infection (PJI) in total joint arthroplasty (TJA) remains a serious clinical challenge. Nowadays, limited biomarkers associated with PJI are available. We investigated therefore the utility of gene expression pattern of Toll-like receptors (TLR) and members of interleukin (IL)1/IL1R family, molecules critically involved in the innate immune response to invading pathogens, for detecting PJI in periprosthetic tissues around TJA. Method. Periprosthetic tissues were collected from 37 patients presenting with PJI and 39 patients having an aseptic failure of TJA. mRNA expression of known TLR receptors (TLR1–10) and 21 members of IL-1/IL-1R family was investigated using an innovative Smartchip Real-Time RT-PCR System. *. ; the data were normalized relative to the housekeeping gene GAPDH. Statistical tests were performed using GraphPad Prism. **. and bio-data mining methods. Results. In PJI, elevated mRNA expression levels of TLR1 (P=0.03), TLR4 (P=0.01) and TLR6 (P=0.01) were detected when compared to tissues from aseptic cases. On the contrary, lower mRNA expression of TLR3 (P=0.04) and TLR7 (P=0.047) were detected in PJI than in aseptic loosening. From IL1/IL-1R family, PJI was associated with elevated levels of IL1β (P=0.0004), IL1RN (P=0.05), IL1R1 (P=0.04), IL1R2 (P=0.01), and IL18RAP (P=0.02) comparing to aseptic failure. Multivariate analysis and sophisticated bio-data mining analysis are ongoing to determine the potential of TLRs and IL1/IL1R family as biomarkers of PJI in TJA. Conclusions. Tissue expression of TLRs and IL1/IL-1R family differ in terms of pattern and expression level between septic and aseptic failure of TJA. Our data support the potential of “innate gene” expression panel as candidate biomarker for assessment of PJI. Further studies are required to replicate our data and also to enable valid interpretation of our findings. Grant support: AZV MZ CR VES15-27726A, VES16-131852A, IGA LF UP_2016_011


Bone & Joint Research
Vol. 11, Issue 1 | Pages 26 - 28
20 Jan 2022
Ma M Tan Z Li W Zhang H Liu Y Yue C


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 319 - 319
1 Jul 2011
Kotsougiani D Heppert V Hänsch GM Wagner C
Full Access

Implant-associated osteomyelitis is caused by persistent bacterial infections, predominantly by staphylococci species forming biofilms on implants or osteosynthesis – materials. In the majority of patients the systemic immune response appears to be inconspicous with only minor upregulation of activation-associated receptors on the polymorphonuclear neutrophils (PMN). We found, however, evidence the activation of T cells, apparent as the expansion of CD4+ and CD8+ T cells bearing the activation-associated receptor CD11b. These cells also lacked the co-stimulatory molecule CD28, which is a further indicator for T cell activation. Moreover, small populations of T cells expressing Toll-like receptors (TLR)1, TLR2 or TLR4 were detected in the patients, while in healthy donors less than 1 % of T cells express TLR. A preferential association of TLR1- and TLR2-expression with CD28-CD11b+ cells was seen, compatible with the fact these cells represent an activated phenotype. In addition to the peripheral blood we also analysed leukocytes recovered from the infected site during surgery for removal of the implant. Predominantly PMN were found, highly activated as judged from their surace recpetor pattern, but also CD4+ and CD8+ T cells. As expected, these T cells represented an activated phenotype, and particularly the CD8+ cells expressed CD57, a receptor identifying end-differentiated T cells. The T cells recovered from the infected site, but not the peripheral blood T cells, produced interferon gamma, a cytokine known to support the function of phagocytic cells. In conclusion our data provide evidence that in response to local, persistent bacterial infections T cells are activated to acquire – among others – receptors selective for bacterial products, which in turn might modulate the T cell function and hence the host defence


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.