Knee joint distraction (KJD) has been associated with clinical and structural improvement and synovial fluid (SF) marker changes. However, structural changes have not yet been shown satisfactorily in regular care, since radiographic acquisition was not fully standardized. AI-based modules have shown great potential to reduce reading time, increase inter-reader agreement and therefore function as a tool for
Introduction. The evaluation of treatment modalities for distal femur periprosthetic fractures (DFPF) post-total knee arthroplasty (TKA) has predominantly focused on functional and radiological outcomes in existing literature. This study aimed to comprehensively compare the functional and radiological efficacy of locking plate (LP) and retrograde intramedullary nail (IMN) treatments, while incorporating mortality rates. Method. Twenty patients (15 female, 5 male) with a minimum 24-month follow-up period, experiencing Lewis-Rorabeck type-2 DFPF after TKA were included. These patients underwent either LP (n=10) or IMN (n=10). The average follow-up duration was 48 months (range: 24–192).
Our knowledge of primary bone marrow edema (BME) of the knee is still limited. A major contributing factor is that it shares several radiological findings with a number of vascular, traumatic, and inflammatory conditions having different histopathological features and etiologies. BME can be primary or secondary. The most commonly associated conditions are osteonecrosis, osteochondritis dissecans, complex regional pain syndrome, mechanical strain such as bone contusion/bruising, micro-fracture, stress fracture, osteoarthritis, and tumor. The etiology and pathogenesis of primary BME are unclear. Conservative treatment includes analgesics, non-steroidal anti-inflammatory drugs, weight-bearing limitations, physiotherapy, pulsed electromagnetic fields, prostacyclin, and bisphosphonates. Surgical treatment, with simple perforation, fragment stabilization, combined scraping and perforation, and eventually osteochondral or chondrocyte transplant, is reserved for the late stages. This retrospective study of a cohort of patients with primary BME of the knee was undertaken to describe their clinical and demographic characteristics, identify possible risk factors, and assess
Abstract. Objective. Meta-analysis of clinical trials highlights that non-operative management of degenerative knee meniscal tears is as effective as surgical management. Surgical guidelines though support arthroscopic partial meniscectomy which remains common in NHS practice. Physiotherapists are playing an increasing role in triage of such patients though it is unclear how this influences clinical management and patient outcomes. Methods. A 1-year cohort (July 2019–June 2020) of patients presenting with MRI confirmed degenerative meniscal tears to a regional orthopaedic referral centre (3× ESP physiotherapists) was identified. Initial clinical management was obtained from medical records alongside subsequent secondary care management and routinely collected outcome scores in the following 2-years. Management options included referral for surgery, conservative (steroid injection and rehabilitation), and no active
Determine the infection risk of nonoperative versus operative repair of extraperitoneal bladder ruptures in patients with pelvic ring injuries.
Pelvic ring injuries with extraperitoneal bladder ruptures were identified from a prospective trauma registry at two level 1 trauma centers from 2014 to 2020. Patients, injuries, treatments, and complications were reviewed. Using Fisher's exact test with significance at P value < 0.05, associations between injury
Open tibial fractures can be difficult to manage, with a range of factors that could affect
A major cause of morbidity in lower limb amputees is phantom limb pain (PLP) and residual limb pain (RLP). This study aimed to determine if surgical interposition of nerve endings into adjacent muscle bellies at the time of major lower limb amputation can decrease the incidence and severity of PLP and RLP. Data was retrospectively collected from January 2015 to January 2021, including eight patients that underwent nerve interposition (NI) and 36 that received standard
Chordoma of the cervical spine is a rare but life-threatening disease with a relentless tendency towards local recurrence. Wide en bloc resection is recommended, but it is frequently not feasible in the cervical spine. Radiation therapy including high-energy particle therapy is commonly used as adjuvant therapy. The goal of this study was to examine
Coronoid fractures account for 2 to 15% of the cases with elbow dislocations and usually occur as part of complex injuries. Comminuted fractures and non-unions necessitate coronoid fixation, reconstruction or replacement. The aim of this biomechanical study was to compare the axial stability achieved via an individualized 3D printed prosthesis with curved cemented intramedullary stem to both radial head grafted reconstruction and coronoid fixation with 2 screws. It was hypothesized that the prosthetic replacement will provide superior stability over the grafted reconstruction and screw fixation. Following CT scanning, 18 human cadaveric proximal ulnas were osteotomized at 40% of the coronoid height and randomized to 3 groups (n = 6). The specimens in Group 1 were treated with an individually designed 3D printed stainless steel coronoid prosthesis with curved cemented intramedullary stem, individually designed based on the contralateral coronoid scan. The ulnas in Group 2 were reconstructed with an ipsilateral radial head autograft fixed with two anteroposterior screws, whereas the osteotomized coronoids in Group 3 were fixed in situ with two anteroposterior screws. All specimens were biomechanically tested under ramped quasi-static axial loading to failure at a rate of 10 mm/min. Construct stiffness and failure load were calculated. Statistical analysis was performed at a level of significance set at 0.05. Prosthetic treatment (Group 1) resulted in significantly higher stiffness and failure load compared to both radial head autograft reconstruction (Group 2) and coronoid screw fixation, p ≤ 0.002. Stiffness and failure load did not reveal any significant differences between Group 2 and Group 3, p ≥ 0.846. In cases of coronoid deficiency, replacement of the coronoid process with an anatomically shaped individually designed 3D printed prosthesis with a curved cemented intramedullary stem seems to be an effective method to restore the buttress function of the coronoid under axial loading. This method provides superior stability over both radial head graft reconstruction and coronoid screw fixation, while achieving anatomical articular congruity. Therefore, better load distribution with less stress at the bone-implant interface can be anticipated. In the clinical practice, implementation of this prosthesis type could allow for early patient mobilization with better short- and long-term
Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the humeral head is the most frequent mechanical failure mode, with rates up to 23%. Besides other known risk factors, such as non-anatomical reduction and lack of medial cortical support, in-adverse intraoperative perforation of the articular surfaces during pilot hole drilling (overdrilling) may increase the risk of secondary screw perforation. Overdrilling often occurs during surgical treatment of osteoporotic PHF due to minimal tactile feedback; however, the awareness in the surgical community is low and the consequences on the fixation stability have remained unproved. Therefore, the aim of this study was to evaluate biomechanically whether overdrilling would increase the risk of cyclic screw perforation failure in unstable PHF. A highly unstable malreduced 3-part fracture was simulated by osteotomizing 9 pairs of fresh-frozen human cadaveric proximal humeri from elderly donors (73.7 ± 13.0 ys, f/m: 3/6). The fragments were fixed with a locking plate (PHILOS, DePuy Synthes, Switzerland) using six proximal screws, with their lengths selected to ensure 6 mm tip-to-joint distance. The pairs were randomized into two treatment groups, one with all pilot holes accurately predrilled (APD) and another one with the boreholes of the two calcar screws overdrilled (COD). The constructs were tested under progressively increasing cyclic loading to failure at 4 Hz using a previously developed setup and protocol. Starting from 50 N, the peak load was increased by 0.05 N/cycle. The event of initial screw loosening was defined by the abrupt increase of the displacement at valley load, following its initial linear behavior. Perforation failure was defined by the first screw penetrating the joint surface, touching the artificial glenoid component and stopping the test via electrical contact. Bone mineral density (range: 63.8 – 196.2 mgHA/cm3) was not significantly different between the groups. Initial screw loosening occurred at a significantly lower number of cycles in the COD group (10,310 ± 3,575) compared to the APD group (12,409 ± 4,569), p = 0.006. Number of cycles to screw perforation was significantly lower for the COD versus APD specimens (20,173 ± 5,851 and 24,311 ± 6,318, respectively), p = 0.019. Failure mode was varus collapse combined with lateral-inferior translation of the humeral head. The first screw perforating the articular surface was one of the calcar screws in all but one specimen. Besides risk factors such as fracture complexity and osteoporosis, inadequate surgical technique is a crucial contributor to high failure rates in locked plating of complex PHF. This study shows for the first time that overdrilling of pilot holes can significantly increase the risk of secondary screw perforation. Study limitations include the fracture model and loading method. While the findings require clinical corroboration, raising the awareness of the surgical community towards this largely neglected risk source, together with development of devices to avoid overdrilling, are expected to help improve the
Introduction. The STarT Back trial demonstrated that targeting back pain treatment according to patient prognosis (low, medium or high-risk subgroups) is effective. However, the mechanisms leading to these improved
Aim. To investigate the validity of threshold values for the Oxford Hip and Knee Score (OHS and OKS) for treatment success 12 months after total knee or hip replacement. Methods. Questionnaires were administered to patients undergoing total hip (THA) or knee (TKA) replacement before and 12 months after surgery alongside questions assessing key accepted aspects of treatment success (satisfaction, pain relief, functional improvement) to form a composite criterion of success and assessed using receiver operator characteristic (ROC) analysis. Thresholds providing maximum sensitivity and specificity for predicting treatment success were determined for the total sample and subgroups defined by pre-surgery scores. Results. Data was available for 3203 THA and 2742 TKA patients. Applying the composite treatment success criterion, 52.7% of the TKA and 65.6% of the THA sample reported a successful
Osteoarthritis is characterised by the loss and damage of cartilage in synovial joints. Whilst joint replacement is the gold standard for end stage disease, repair or regenerative strategies aim to slow disease progression, maintain joint function and defer the need for joint replacement. One approach seeks to target endogenous repair after drilling or microfracture (a type of trauma induced repair) in the area of cartilage loss – connecting the defect to the underlying bone marrow niche. The rationale of this approach is that cells delivered to the defect site, from the bone marrow, will bring about cartilage repair. Bone marrow contains multipotent cells, including stem and stromal populations, of both the haematopoietic and skeletal systems. Bone marrow mesenchymal stromal cells (BMSCs) are characterised by tri-lineage differentiation (bone, cartilage and adipose tissue) and contribute to the formation of the bone marrow niche, which maintains haematopoietic stem cell quiescence. This quiescence ensures life-long haematopoiesis and the supply of mature blood cells to the haematopoietic system. In this study we investigate the interactions between haematopoietic and BMSCs (in both human and mouse cultures) specifically to understand the consequences on BMSCs during tissue repair. A murine MSC cell-line model was co-cultured with enriched fractions of primary murine haematopoietic progenitor cells isolated based on c-Kit, Sca-1, and lineage markers. Similarly, human bone marrow derived MSCs were co-cultured with primary bone marrow haematopoietic fractions isolated based on CD34, CD38 and lineage markers. Using confocal microscopy, we demonstrated that the two cell populations directly interact through cell-cell contact with haematopoietic cells located above and below the MSC monolayer. Cultures were then pushed to differentiate down the osteogenic lineage. Results indicate that MSCs co-cultured with haematopoietic cells exhibited significant inhibition of osteogenesis when analysed by functional assay of matrix mineralisation and gene expression analysis for transcripts including Runx2, Osterix and type I collagen. These data support the hypothesis that hematopoietic progenitor cells influence both the local homeostasis of the bone marrow as well as the repair potential of stromal cells. Such interactions could be important for the resolution of injury after trauma induced repair. Furthermore, manipulation of these interactions, such as the administration of haematopoietic cell stimulating agents, could be used to improve
Knee ligament injury is one of the most frequent sport injuries and ligament reconstruction has been used to restore the structural stability of the joint. Cycling exercises have been shown to be safe for anterior cruciate ligament (ACL) reconstruction and are thus often prescribed in the rehabilitation of patients after ligament reconstruction. However, whether it is safe for posterior cruciate ligament (PCL) reconstruction remains unclear. Considering the structural roles of the PCL, backward cycling may be more suitable for rehabilitation in PCL reconstruction. However, no study has documented the differences in the effects on the knee kinematics between forward and backward pedaling. Therefore, the current study aimed to measure and compare the arthrokinematics of the tibiofemoral joint between forward and backward pedaling using a biplane fluoroscope-to- computed tomography (CT) registration method. Eight healthy young adults participated in the current study with informed written consent. Each subject performed forward and backward pedaling with an average resistance of 20 Nm, while the motion of the left knee was monitored simultaneously by a biplane fluoroscope (ALLURA XPER FD, Philips) at 30 fps and a 14-camera stereophotogrammetry system (Vicon, OMG, UK) at 120 Hz. Before the motion experiment, the knee was CT and magnetic resonance scanned, which enabled the reconstruction of the bones and articular cartilage. The bone models were registered to the fluoroscopic images using a volumetric model-based fluoroscopy-to-CT registration method, giving the 3-D poses of the bones. The bone poses were then used to calculate the rigid-body kinematics of the joint and the arthrokinematics of the articular cartilage. In this study, the top dead center of the crank was defined as 0° so forward pedaling sequence would begin from 0° to 360°. Compared with forward pedaling, for crank angles from 0° to 180°, backward pedaling showed significantly more tibial external rotation. Moreover, both the joint center and contact positions in the lateral compartment were more anterior while the contact positions in the medial compartment was more posterior, during backward pedaling. For crank angles from 180° to 360°, the above-observed phenomena were generally reversed, except for the anterior-posterior component of the contact positions in the medial compartment. Forward and backward pedaling displayed significant differences in the internal/external rotations while the rotations in the sagittal and frontal planes were similar. Compared with forward cycling, the greater tibial external rotation for crank angles from 0° to 180° during backward pedaling appeared to be the main reason for the more anterior contact positions in the lateral compartment and more posterior contact positions in the medial compartment. Even though knee angular motions during forward and backward pedaling were largely similar in the sagittal and frontal planes, significant differences existed in the other components with different contact patterns. The current results suggest that different pedaling direction may be used in rehabilitation programs for better
Background. We prospectively studied achilles tendon acute rupture cases operated over 2 years and reviewed the causes,
Summary Statement. A resorbable and biocompatible polymer-based scaffold was used for the proliferation and delivery of adipose derived stromal cells, as well as delivery of a cell growth/differentiation promoting factor for improved tendon defect regeneration. Introduction. Surgeons perform thousands of direct tendon repairs annually. Repaired tendons fail to return to normal function following injury, and thus require continued efforts to improve patient outcomes. The ability to produce regenerate tendon tissue with properties equal to pre-injured tendon could lead to improved
Background/Purpose of study. The increasing aging of the population will see a growing number of patients presenting for spine surgery with appropriate indications but numerous medical comorbidities. This complicates decision-making, requiring that the likely benefit of surgery (outcome) be carefully weighed up against the potential risk (complications). We assessed the influence of comorbidity on the risks and benefits of spine surgery. Methods. 3′699 patients with degenerative lumbar disorders, undergoing surgery with the goal of pain relief, completed the multidimensional Core Outcome Measures Index (COMI; scored 0–10) before and 12 months after surgery. At 12mo they also rated the global
Background. Self-rated disability scores in patients with chronic LBP (cLBP) do not always relate well to performance in traditional physical tests (e.g. back strength, fatigability, etc.). Therefore tests using “functional activities” that challenge for example trunk mobility and movement speed have been suggested as alternative “objective” outcome measures. We examined the relationship between self-reported disability and a battery of such functional tests. Methods. 37 patients with cLBP took part (45±12y; 23f, 14m); 32 completed 9 weeks' physiotherapy. Before and after therapy, the patients completed the Roland Morris disability questionnaire (RM) and performed a battery of 8 simple tests (stair climb, prolonged flexion, stand to floor, lift test, sock test, roll-up test, pick-up test, fingertip-to-floor test). Results. Baseline RM scores were significantly correlated with each of the functional test scores (ranging from r=0.33 (sock test) to 0.51 (fingertip to floor); p<0.05), and with a sum index score for all functional tests (r=0.60, p<0.001). The effect size for the change in RM score pre-treatment to post-treatment was 0.54; the corresponding value for the functional test index was 0.73. The correlation between the treatment change-scores for RM and the functional test index was 0.55 (P=0.001). Conclusion. Self-reported activity limitations and objectively-measured performance were moderately highly correlated. The fingertip-to-floor test delivered the most clinically relevant information, having the strongest relationship with the RM scores. The test battery appears to provide a valid measure of activity limitations in patients with back pain and may be a useful tool to complement or substantiate self-report measures to assess
Background and purpose of the study. Effective communication between healthcare professionals and patients is key to a successful consultation and is reported to affect both adherence to
Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS).Objectives
Methods