There are several clinical scenarios to consider cementing an
There are several clinical scenarios to consider cementing an
HXLPE
Introduction. Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell. 1. Failure could occur due to
Introduction. HXLPE
Introduction. Periprosthetic osteolysis is considered the main problem limiting the longevity and clinical success of artificial hip joints. Aiming at the reduction of the wear particles and the elimination of periprosthetic osteolysis, we have recently developed a novel articular cartilage-inspired technology for surface modification (Aquala® technology) with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting (100–150 nm in thickness) for an
Isolated liner and head exchange procedure has been an established treatment method for polyethylene wear and osteolysis when the acetabular component remains well-fixed. In this study, its mid-term results were evaluated retrospectively in 34 hips. Among the consecutive patients operated upon from September 1995, 2 patients (3 hips) were excluded because of inadequate follow-up and the results of remaining 34 hips of 34 patients were evaluated. They were 20 men and 14 women with a mean age of 49 years at the time of index surgery. Conventional polyethylene liner was used in 26 cases and highly cross-linked polyethylene liner was used in 8 cases. In 3 cases, liner was cemented in the metal shell because compatible liner could not be used. After a minimum follow-up of 5 years (range, 5∼20.2), re-revision surgery was necessary in 10 cases (29.4%); 8 for wear and osteolysis, 2 for acetabular loosening. In all re-revision cases, conventional polyethylene was used. There was no failure in the cases in which highly cross-linked polyethylene was used. There was no case complicated with dislocation. The results of this study suggest more promising results with the use of highly cross-linked polyethylene in isolated liner exchange.
Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the
Introduction. Dual mobility (DM) total hip arthroplasty (THA) prostheses are designed to increase stability. In the setting of primary and revision THA, DM THA are used most frequently for dysplasia and instability diagnoses, respectively. As the use of DM THA continues to increase, with 8,031 cases logged in the American Joint Replacement Registry from 2012–2018, characterizing in vivo damage and clinical failure modes are important to report. Methods. Under IRB-approved implant retrieval protocol, 43 DM THA systems from 41 patients were included. Each DM THA component was macroscopically examined for standard damage modes. Clinically-relevant data, including patient demographics and surgical elements, were collected from medical records. Fretting and corrosion damage grading is planned, according to the Goldberg et al. classification system. Results. In this 43-retrieved implant series, there were 23 female and 17 male patients (n=1, unknown), with an average body mass index of 29 (range, 19–49), and average ages at index and revision of 63 years (range, 34–80) and 64 years (range, 38–88), respectively. The average duration of implantation was 12.9 months (range, 0.1–72.0). Reasons for revision included infection (n=11, 26%), mechanical complication (n=10, 23%), intraprosthetic dislocation (n=6, 14%), periprosthetic fracture (n=5, 12%), pain (n=4, 9%), acetabular-associated loosening (n=3, 7%), unknown (n=3, 7%), hematoma (n=2, 5%), leg length discrepancy (n=1, 2%), and inflammatory reaction (n=1, 2%); some cases included multiple reasons for revision. On articular surfaces, scratching was the most commonly observed damage mode on all components, with more than 40% of acetabular cup and femoral heads showing scratching damage (Figure 1A). Abrasion, burnishing, and pitting damage were also observed in more than 10% of acetabular cup and
Introduction. Modular
Introduction. Total hip replacement with metal-on-polymer (MoP) hip prostheses is a successful treatment for late-stage osteoarthritis. However, the wear debris generated from the polymer
Component malposition in total hip arthroplasty (THA) contributes to wear, dislocation, and leg length discrepancy (LLD). Robotic assisted total hip arthroplasty (rTHA) utilises computer-assisted haptically guided bone preparation and implant insertion to improve accuracy. The goal of this study is to compare accuracy and clinical outcome with manual THA (mTHA) and rTHA at minimum 1 year follow-up interval. Consecutive primary THA performed by one fellowship trained surgeon included: the first 100 mTHAs in his clinical practice (Group1- year 2000), the last 100 mTHAs before rTHA use (Group2- year 2010), and the first 100 rTHA (Group3- year 2011). All THAs utilised cementless implants, cross-linked polyethylene, and a posterior approach. Comparisons included age, sex, diagnosis, implant head size, blood loss (EBL), operative time, LLD, early dislocation and infection. Acetabular abduction (AAB), anteversion (AAV), and LLD were measured using validated software (Martell Hip Analysis Suite). The Lewinnek safe zone defined accuracy (AAB- 30°-50°, AAV- 5°-25°). Statistical analysis included ANOVA, Chi squared, and Fisher tests. Power analysis demonstrated adequate sample sizes. No differences were noted regarding group demographics. Average operative times varied: Group 1, 2, and 3- (160, 129, and 143 minutes, respectively). No deep infections occurred in any group. LLD greater than 1.5 cm varied: Groups 1, 2, and 3 (9%, 1%, 1%, respectively). Dislocation rates varied: Groups 1, 2, and 3- (5%, 3%, and 0%, respectively). EBL was less with rTHA than mTHA (Groups 1, 2, 3: 533cc, 437cc, 357cc, respectively). Average implant head size increased comparing Groups 1, 2, and 3 (31mm, 34.6mm, and 35.2mm, respectively). AAB accuracy varied: Groups 1, 2, and 3 (66%, 91%, and 98%, respectively). AAB greater than 55 degrees varied: Groups 1, 2, and 3 (15%, 1%, and 0%, respectively). There was a 3% fractured
Introduction:. First generation highly crosslinked polyethylenes (HXPLEs) have proven successful in lowering both penetration and osteolysis rates. However, 1. st. generation annealing and remelting thermal stabilization have been associated with in vivo oxidation or reduced mechanical properties. Thus, 2. nd. generation HXLPEs were developed to improve oxidative stability while still maintaining material properties. Little is known about the in vivo clinical failure modes of these 2. nd. generation HLXPEs. The purpose of this study was to assess the revision reasons, wear, oxidative stability, and mechanical behavior of retrieved sequentially annealed Vitamin E diffused HXLPE in THA and TKA. Methods:. 251 2. nd. Generation HXLPE hip and knee components were consecutively retrieved during revision surgeries and continuously analyzed in a prospective, IRB approved, multicenter study. 123
Introduction. Subluxation and dislocation are frequently cited reasons for THA revision. For patients who cannot accommodate a larger femoral head, an offset liner may enhance stability. However, this change in biomechanics may impact the mechanical performance of the bearing surface. To our knowledge, no studies have compared wear rates of offset and neutral liners. Herein we radiographically compare the in-vivo wear performance of 0mm and 4mm offset
Introduction. Modular
There are several clinical scenarios to consider cementing an
Introduction. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized zirconium (Oxinium) has been introduced for use in total hip arthroplasty (THA) and total knee arthroplasty (TKA). One of the most common causes of failure of THA is aseptic loosening secondary to polyethylene wear debris. The aetiology of wear is multifactorial and includes adhesive, abrasive, third-body and fatigue wear mechanisms. Oxidized zirconium is a relatively new material that features an oxidized ceramic surface chemically bonded to a hard metallic substrate. This material possesses the reduced polyethylene wear characteristics of a ceramic, without the increased risk of implant fracture While short-term results of oxidized zirconium in THA have been reported, there have been no reports on retrieved highly cross linked PE articulating with Oxinium headsObjectives:. Objectives. The purpose of this study was to compare matched pairs of retrieved highly cross-linked polyethylene (XLPE)
Patients with longstanding hip fusion are predisposed to symptomatic degenerative changes of the lumbar spine, ipsilateral knee and contralateral hip. In such patients, conversion of hip arthrodesis to hip replacement can provide relief of such symptoms. However, this is a technically demanding procedure associated with higher complication and failure rates than routine total hip replacement. The aim of this study was to determine the early functional results and complications in patients undergoing hip fusion conversion to total hip replacement, performed or supervised by a single surgeon, using a standardised approach and uncemented implants. We hypothesised that a satisfactory functional improvement can be achieved in following conversion of hip fusion to hip replacement. Eighteen hip fusions were converted to total hip replacements. A constrained
A well-fixed uncemented acetabular component is most commonly removed for chronic infection, malposition with recurrent dislocation, and osteolysis. However, other cups may have to be removed for a broken locking mechanism, a bad “track record”, and for metal-on-metal articulation problems. Modern uncemented acetabular components are hemispheres which have 3-dimensional ingrowth patterns. Coatings include titanium or cobalt-chromium alloy beads, mesh, and now the so-called “enhanced coatings”, such as tantalum trabecular metal, various highly porous titanium metals, and 3-D printed metal coatings. These usually pose a problem for safe removal without fracture of the pelvis or creation of notable bone deficiency. Preoperative planning is essential for safe and efficient removal of these well-fixed components. Strongly consider getting the operative report, component “stickers”, and contacting the implant manufacturer for information. There should a preoperative check list of the equipment and trial implants needed, including various screwdrivers, trial liners, and a chisel system. The first step in component removal is excellent 360-degree exposure of the acetabular rim, and this can be accomplished by several approaches. Then, the
Revision of fractured ceramic-on-ceramic total hip replacements with a cobalt-chromium (CoCr) alloy-on-polyethylene articulation can facilitate metallosis and require further expensive revision surgery [1–3]. In the present study, a fifty-two year old male patient suffered from fatal cardiomyopathy after undergoing revision total hip arthroplasty. The patient had received a polyethylene-ceramic