Background. Simply stated,
Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated CoCrMo articulating on ultra-high-molecular-weight polyethylene. All articluations generate wear particles and subsequent emission of metal ions due to the mechanical loading. These wear particles cause diverse negative reactions in the surrounding tissues and can lead to implant loosening. Coating technologies might offer the possibility to reduce this wear. Therefore, we investigated the applicability of tetrahedral amorphous
Osteoarthritis (OA) is a degenerative joint disease affecting millions worldwide. Early detection of OA and monitoring its progression is essential for effective treatment and for preventing irreversible damage. Although sensors have emerged as a promising tool for monitoring analytes in patients, their application for monitoring the state of pathology is currently restricted to specific fields (such as diabetes). In this study, we present the development of an optical sensor system for real-time monitoring of inflammation based on the measurement of nitric oxide (NO), a molecule highly produced in tissues during inflammation. Single-walled
Background. Due to their tailored porous texture, breathability and flexibility,
Background context. Fusion is a fundamental procedure in spine surgery. Although autogenous grafts have ideal bone graft characteristics, their use may remain limited due to various morbidities. Even though ceramic based synthetic bone grafts are used commonly at present, in order to enhance their efficacy, their combined use with other materials has been investigated. The use of
Introduction. Ten explanted pyrolytic
Summary Statement. Innovative nanocomposite
To date there has been no material for endoprosthetics providing excellent resistance to abrasion and corrosion combined with great tensile strength, fracture toughness, and bending strength, as well as adequate biocompatibility. Carbon-fiber-reinforced silicon carbide (C/SiC, C/C-SiC or C/SiSiC) is as a ceramic compound a potentially novel biomaterial offering higher ductility and durability than comparable oxide ceramics. Aim of this investigation was to test the suitability of C/SiC ceramics as a new material for bearing couples in endoprosthetics. One essential quality that any new material must possess is biocompatibility. For this project the in-vitro biocompatibility was investigated by using cuboid like scaffolds made of CMC. To determine whether the material is suited as a lubricant partner in endoprosthetics, we measured its abrasion coefficient and wear tolerance against various antibodies. The C/SiC samples tested were produced via the Liquid Silicon Infiltration (LSI) of pyrolized porous fiber preforms made by warm-flow pressing free-flowing granulates on a hydraulic downstroking press with a heated die of the type HPS-S, 1000 kN. After preparation of the composites, the tribological characteristics are determined. Flexural strength was determined at room temperature according to DIN685-3 with an universal testing machine Z100 and the Young”s -modulus was carried out via resonant frequency-damping analysis RFDA. The samples”surface as well as cell adhesion and cell morphology were assessed via ESEM. The human osteoblast-like cell line MG-63 and human ostoeblast were used for cel culture ecperiments (WST, Live/dead, Cytotoxicity, cell morphology). Based on the raw data the mean value and the standard deviation were calculated. The Mann-Whitney-U-Test was used to evaluate the differences between experiment and control samples. The flexural strength at room temperature is approx. 180 MPa, while the elongation at break is about 0.13%. The Young”s modulus is detected between 120 and 150 GPa. The density lies between 2.5 and 3.0 g/cm3. We noted a friction coefficient µ between 0.31. The cell lines exhibited no morphological alterations, and adhered well to the C/SiC samples. Vitality was not impaired by contact with the ceramic composite. Cell growth was observed evenly distributed over a 21-day period. In the future, investigators aiming to apply this composite in endoprosthetics will have to focus on its efficacy in conjunction with sudden, strong demands, and long-term performance in bodily fluids within joint simulators, etc. In conclusion: C/SiC can definitely be considered a new material with genuine potential for use in endoprosthetics.
Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants. In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN multi-layer in regard to
loosening torques in comparison with initial fastening torques Optical, DSLR camera and stereo light microscope analysis distinction between different wear modes and classification with a modified HOOD-score SEM & EDX of representative samples surface roughness and depth profilometry with a focus on the four CFR-PEEK components integrated in the EnduRo® RHK design. For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm3/million cycles (cobalt-chromium) and 0.21 ± 0.02 mm3/million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating. For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating.
The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. We defined it as neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with
Serial section electron microscopy (SSEM) was initially developed to map the neural connections in the brain. SSEM eventually led to the term ‘Connectomics’ to be coined to describe process of following a cell or structure through a volume of tissue. This permits the true three-dimensionality to be appreciated and relationships between cells and structures. The purpose of this study was to utilize this methodology to interrogate S. aureus infected bone. Bone samples were harvested from mice tibia infected with S. aureus and were fixed, decalcified, and osmicated. The samples were paraffin embedded and 5-micron sections were cut to identify regions of bacterial invasion into the osteocyte-lacuna-canalicular-network (OLCN). This area was cut from the paraffin block, deparaffinized, post-fixed and reprocessed into epoxy resin. Serial sections were cut at 60nm and collected onto Kapton tape utilizing the Automated Tape-collecting Ultramicrotome (ATUMtome) system. Samples were mounted onto 4” silicon wafers and post-stained with 2% uranyl acetate followed by 0.3% lead citrate and
The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function. Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies. A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/
Introduction. Pedicle screw loosening in posterior instrumentation of thoracolumbar spine occurs up to 60% in osteoporotic patients. These complications may be alleviated using more flexible implant materials and novel designs that could be optimized with reliable computational modeling. This study aimed to develop and validate non-linear homogenized finite element (hFE) simulations to predict pedicle screw toggling. Method. Ten cadaveric vertebral bodies (L1-L5) from two female and three male elderly donors were scanned with high-resolution peripheral quantitative computed tomography (HR-pQCT, Scanco Medical) and instrumented with pedicle screws made of
Introduction. Congenital scoliosis is a prevalent congenital spinal deformity, more frequently encountered than congenital lordosis or kyphosis. The prevailing belief is that most instances of congenital scoliosis are not hereditary but rather stem from issues in fetal spine development occurring between the 5th and 8th weeks of pregnancy. However, it has been linked to several genes in current literature. Our goal was to explore potential pathways through an exhaustive bioinformatics analysis of genes related to congenital scoliosis. Method. The literature from the 1970s to February 2024 was surveyed for genes associated with CS, and 63 genes were found to be associated with AIS out of 1743 results. These genes were analyzed using DAVID Bioinformatics. Result. Our pathway analysis has unveiled several significant associations with congenital scoliosis. Notably, “Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate” (P-Value:8.8E-3, Fold Enrichment: 20.6), “Central
Abstract. OBJECTIVES. Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms. METHODS. Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry. RESULTS. Non-lethal dispersion of biofilm-associated S. aureus was associated with a four-fold reduction in gentamicin tolerance and a 25% increase in cellular respiration of both dispersed and adherent cells. Metabolome analysis found non-lethal dispersion reduced intracellular levels of L-ornithine and L-proline, with increased levels of cyclic nucleotides (p<0.05) in both liberated cells and the remaining biofilm-associated bacteria. These metabolomic changes have previously been shown to be associated with inactivation of the
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester
In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively. En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular
As a part of the European Union BIOMED I study “Assessment of Bone Quality in Osteoporosis,” Sixty-nine second lumbar vertebral body specimens (L2) were obtained post mortem from 32 women and 37 men (age 24–92 years). Our initial remit was to study variations in density of the calcified tissues by quantitative backscattered electron imaging (BSE-SEM). To this end, the para-sagittal bone slices were embedded in PMMA and block surfaces micro-milled and
Objectives. Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Methods. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data. Results. The amount of
The use of stem cells transplanted into the intervertebral disc (IVD) is a promising regenerative approach to treat intervertebral disc degeneration (IDD). The aim of this study was to assess the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) loaded with human mesenchymal stem cells (hMSCs), on IVD extracellular matrix synthesis and nucleus pulposus (NP) marker expression in a whole IVD culture model. HA was blended with batroxobin (BTX), a gelling agent activated in presence of PRP to construct a hydrogel. Bovine IVDs (n=25) were nucleotomised and filled with 1×10. 6. or 2×10. 6. hMSCs suspended in ∼150 mL of the PRP/HA/BTX hydrogel. IVDs harvested at day 0 and nucleotomised IVDs with no hMSCs and/or hydrogel were used as controls. hMSCs alone or encapsulated in the hydrogel were also cultured in well plates to examine the effect of the IVD microenvironment on hMSCs. After 1 week, tissue structure, scaffold integration and gene expression of anabolic (collagen type I, collagen type II and aggrecan), catabolic (matrix metalloproteinase 3 – MMP-3 –, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs 4) and NP cell (cytokeratin 19,