Advertisement for orthosearch.org.uk
Results 1 - 20 of 94
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 41 - 41
22 Nov 2024
Copier B Visser D van Oldenrijk J Bos K Veltman W
Full Access

Aim. Periprosthetic joint infection (PJI) is a devasting complication after total hip arthroplasty. Joint aspiration and preoperative biopsy can be helpful diagnostics for PJI. The aim of this study is to evaluate the diagnostic value of preoperative biopsies after inconclusive or dry tap aspiration of the hip in patients undergoing revision hip arthroplasty. Secondarily we will evaluate the diagnostic value of synovial fluid aspiration cultures and peroperative tissue cultures for diagnosing or ruling out PJI. Methods. Patients who underwent diagnostic aspiration and subsequent preoperative biopsy and/or revision surgery between January 2015 and January 2024 were included in the study. Synovial fluid aspirations and tissue samples obtained from biopsy and revision surgery were interpreted using the European Bone and Joint Infection Society criteria for PJI and in close consultation with the microbiologist. Results. 207 Patients were included with 231 synovial fluid aspirations. Sensitivity and specificity of synovial fluid aspiration cultures were 76% and 98%. In 62 patients tissue biopsies were performed, of which 40 after a dry tap. The tissue biopsies after a dry tap aspiration had a sensitivity of 50.0% and a specificity of 95.8%. In 21% tissue biopsies led to the confirmation of PJI in patient with a high suspicion of PJI after dry tap aspiration. In patients with an inconclusive synovial fluid aspiration result the addition of tissue biopsies led to a change in treatment in 14%. In 212 cases revision surgery was performed, intraoperative tissue cultures had a sensitivity and specificity of 83.3% and 99.3%. Conclusions. Diagnosing PJI can be troublesome, especially if synovial fluid aspiration provides a dry tap. Tissue biopsy cultures in patients with a high suspicion of PJI after dry tap aspiration is a feasible way to confirm PJI, in 21% of patients PJI could be confirmed after dry tap aspiration. Ruling out PJI by means of a biopsy after a dry tap aspiration is less successful due to its low sensitivity. Tissue biopsies after an inconclusive aspiration leads to clinically important treatment changes


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 22 - 22
1 Jun 2023
North A Stratton J Moore D McCann M
Full Access

Introduction. External fixators are attached to bones with percutaneous pins and wires inserted through soft tissues and bone increasing the risk of infections. Such infections compromise patient outcomes e.g., through pin loosening or loss, failure of fixator to stabilise the fracture, additional surgery, increased pain, and delayed mobilisation. These infections also impact the healthcare system for example, increased OPD visits, hospitalisations, treatments, surgeries and costs. Nurses have a responsibility in the care and management of patients with external fixators and ultimately in the prevention of pin-site infection. Yet, evidence on best practices in the prevention of pin-site infection is limited and variation in pin-site management practices is evident. Various strategies are used for the prevention of pin-site infection including the use of different types of non-medicated and medicated wound dressings. The aim of this retrospective study was to investigate the use of dry gauze or iodine tulle dressings for the prevention of pin-site infections in patients with lower limb external fixators. Methodology. A retrospective study of patients with lower limb external fixators who attended the research site between 2015–2022. Setting & Sample: The setting was the outpatient's (OPD) orthopaedic clinic in a University Teaching Hospital in Dublin, Ireland. Eligibility Criteria:. Over the age of 16, treated with an Ilizarov, Taylor Spatial frame (TSF) or Limb Reconstruction System (LRS) external fixators on lower limbs,. Pin-sites dressed with dry gauze or iodine tulle,. Those with pre-existing infected wounds close to the pin site and/or were on long term antibiotics were excluded. Follow Up Period: From time of external fixator application to first pin-site infection or removal of external fixator. Outcome Assessment: The primary outcome was pin-site infection, secondary outcomes included but were not limited to frequency of pin-site infection according to types of bone fixation, frequency of pin/wire removal and hospitalisation due to infection. Data analysis: IBM SPSS Version 25 was used for statistical analysis. Descriptive and inferential statistics were conducted as appropriate. Categorical data were analysed by counting the frequencies (number and percentages) of participants with an event as opposed to counting the number of episodes for each event. Differences between groups were analysed using Chi-square test or Fisher's exact test, where appropriate. Continuous variables were reported using mean and standard deviations and difference analysed using a two-sample independent t-test or non-parametric test (Mann-Whitney), where appropriate. Using Kaplan-Meier, survival analysis explored time to development of infection. Ethical approval: granted by local institute Research Ethics Committee on 12th March 2018. Results. During the study period, 97 lower limb external fixators were applied with 43 patients meeting the study eligibility criteria. The mean age was 38 (SD 14.1; median 37) and the majority male (n=32, 74%). At least 50% (n=25) of participants had an IIizarov fixator, with 56% (n=24) of all fixators applied to the tibia and fibula. Pin/wire sites were dressed using iodine (n=26, 61%) or dry gauze dressings (n=15, 35%). The mean age of participants in the iodine group was significantly higher than the dry gauze group (p=.012). The only significant difference between the iodine and dry gauze dressing groups at baseline was age. A total of 30 (70%) participants developed a pin-site infection with 26% (n=11) classified as grade 2 infection. Clinical presentation included redness (n=18, 42%), discharge (n=16, 37%) and pain (n=15, 35%). Over half of participants were prescribed oral antibiotics (n=28, 65%); one required intravenous antibiotics and hospitalization due to pin-site infection. Ten (23%) participants required removal of pin/wires; two due to pin-site infection. There was no association between baseline data and pin-site infection. The median time to developing an infection was 7 weeks (95%, CI 2.7 to 11.29). Overall, there were 21 (81%, n=26) pin-site infections in the iodine group and nine (60%, n=15) in the dry gauze group, difference in proportion and relative risk between the dressing groups were not statistically significant (RR 1.35, 95% CI 0.86–2.12; p= .272). There was no association between baseline data, pin-site infection, and type of dressing. Conclusions. At the research site, patients are referred to the OPD orthopaedic clinic from internal and external clinical sites e.g., from Hospital Consultants, General Practitioners and occasionally from multidisciplinary teams, throughout Ireland. Our retrospective observation study found that 97 lower limb external fixators were applied over a seven-year period which is lower than that reported in the literature. However, the study period included the COVID pandemic years (2020 and 2021) which saw a lower number of external fixators applied due to lack of theatre availability, cancelled admissions and social/travel restrictions that resulted in fewer accidents and lower limb trauma cases requiring external fixator application. The study highlighted a high infection rate with 70% of participants developing pin-site infection which is in keeping with findings reporting in other studies. Our study showed that neither an iodine nor dry gauze dressing was successful in preventing pin-site infection. In the iodine group 81% of participants developed infection compared to 60% in the dry gauze group. Given the lack of difference between the two groups consideration needs to be given to the continued use of iodine dressings in the prevention of pin-site infection. Pin-site infections result in a high portion of participants being prescribed antibiotics and, in an era, that stresses the importance of antimicrobial stewardship there is a need to implement effective infection prevention and control strategies that minimise infection. Further research is therefore needed to investigate more innovative medicated dressings such as those that contain anti-microbial or anti-bacterial agents


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 19 - 19
1 Nov 2016
Schachar R Dwyer T Leroux T Greben R Kulasegaram M Henry P Ogilvie-Harris D Theodoropoulos J Chahal J
Full Access

The purpose of this study was to validate a dry model for the assessment of performance of arthroscopic rotator cuff repair (RCR) and labral repair (LR). We hypothesised that the combination of a checklist and a previously validated global rating scale (GRS) would be a valid and reliable means of assessing RCR and LR when performed by residents in a dry model. An arthroscopic RCR and LR was performed on a dry model by residents, fellows, and sports medicine staff. Any prior RCR and LR exposure was noted. Participants were given a detailed surgical manuscript and technique video before the study began. Evaluation of residents was performed by staff surgeons with task-specific checklists created using a modified Delphi procedure, and the Arthroscopic Surgical Skill Evaluation Tool (ASSET). The hand movements and arthroscopic view of the procedures were recorded. Both videos were scored by a fellow blinded to the year of training of each participant. A total of 35 residents, six fellows and five staff surgeons performed both arthroscopic RCR and LR on a dry model model (48 total). The internal reliability (Cronbach's Alpha) of the test using the total ASSET score was high (>0.8)). One-way analysis of variance for the total ASSET score and the total checklist score demonstrated a difference between participants based upon year of training (p<0.05). Post hoc analysis also demonstrated a significant difference in global ratings and checklist scores between junior residents (PGY1–3) and senior residents (PGY4&5), senior residents and fellows, and fellows and staff. A good correlation was seen between the total ASSET score and prior exposure to RCR and LR. The inter-rater reliability (ICC) between the examiner ratings and the blinded assessor ratings for the total ASSET score was good (0.8). The results of this study provide evidence that the performance of a RCR and LR in a dry model is a valid and reliable method of assessing a resident's ability to perform these procedures, prior to performance in the operating room


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 171 - 171
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction. Demineralised Bone Matrix (DBM) is widely used in Orthopaedics and dentistry as a bone graft substitute and may be used to augment bone formation in load bearing applications. In this study we examine the effect of gamma irradiation and freeze drying on the tensile strength of Demineralised Cortical Bone (DCB). Methods. Tibias were harvested from mature ewes and cut into bony strips. Demineralisation was done using 0.6M HCL and confirmed by X-ray. Specimens were washed until a pH of 7.0 +/_ 0.2 was achieved in the washing solutions. Specimens were allocated into 4 groups; group (A) non freeze dried non gamma irradiated, group (B) freeze dried non gamma irradiated, group (C) non freeze dried gamma irradiated mention the level of gamma irradiation and group (D) freeze dried and gamma irradiated. The maximum tensile force and stress were measured. Statistical analysis using the Mann-Whitney U test was carried out. Results. The Median of maximum tensile force for group (A) was 218N, group (B) was 306N, group (C) was 263N and for group (D) was 676N. Group (D) results were statistically higher (p=< 0.05) compared to group (A) and (C), while there was no statistical significance compared to group (B). Conclusion. Previously published studies suggested the possibility of using DCB as ACL graft substitute. We examined the effect of gamma radiation as the most common sterilisation technique in medical field and the freeze drying as a possible technique for long term storage on the tensile strength of the DCB. Freeze drying significantly increases the tensile strength of the DCB while gamma irradiation has no significant effect. Our results indicate that freeze dried gamma irradiated DCB can be used as a ligament substitute


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 56 - 56
1 Sep 2012
Yeo A Kendall N Jayaraman S
Full Access

Introduction. Chronic Achilles tendinopathy is a common overuse injury. There are several modalities of treatment, reflecting difficulties in its management. In particular, due to the well-recognised morbidity associated with surgical decompression, treatment has steered towards a less invasive route. Dry needling has been efficacious in managing other tendinopathies. This study therefore assessed dry needling and percutaneous hydrostatic decompression of the Achilles tendon as a novel treatment for this condition. Methods. Twenty-two patients with 27 sonographically-confirmed chronic Achilles tendinopathy were prospectively enrolled. All were symptomatic for >6 months and have failed alternative conservative treatments. Ultrasound-guided dry needling of neovascular areas and paratenon hydrostatic decompression was performed by a dedicated musculoskeletal radiologist on a 6-weekly basis until symptomatic resolution or no improvement was evident. Sonographic assessment of the tendon's thickness and neovascularity was undertaken. Following treatment, a standardized physiotherapy regime was adopted. At baseline and 6 weeks post-final procedure, visual analogue scores (VAS) at rest and during activity were obtained. Telephonic interviews were carried out 12 and 24 months post-treatment. Results. 24 tendons (in 19 patients) were successfully treated - 1 patient had spontaneous symptomatic resolution and 2 progressed to surgical intervention. The mean number of treatment sessions was 2. There was no significant change in neovascularity or tendon thickness after treatment. Therapeutic intervention led to a significant improvement in VAS at rest (42 v 18.4, p=0.0005) and during activity (74 v 33.7, p< 0.0001). At 12 months, 77% of patients were >80% satisfied with their outcome of the procedure, with 85% of patients able to return to their sporting interests. At 24 months, 90% of patients were >80% satisfied with their outcome, with nearly half having complete symptomatic resolution. Conclusion. Dry needling and percutaneous paratenon decompression under ultrasound guidance shows promise as an alternative treatment for this chronic condition


Bone & Joint Open
Vol. 3, Issue 8 | Pages 607 - 610
1 Aug 2022
Wellington IJ Hawthorne BC Dorsey C Connors JP Mazzocca AD Solovyova O

Aims. Tissue adhesives (TAs) are a commonly used adjunct to traditional surgical wound closures. However, TAs must be allowed to dry before application of a surgical dressing, increasing operating time and reducing intraoperative efficiency. The goal of this study is to identify a practical method for decreasing the curing time for TAs. Methods. Six techniques were tested to determine which one resulted in the quickest drying time for 2-octyle cyanoacrylate (Dermabond) skin adhesive. These were nothing (control), fanning with a hand (Fanning), covering with a hand (Covering), bringing operating room lights close (OR Lights), ultraviolet lights (UV Light), or prewarming the TA applicator in a hot water bath (Hot Water Bath). Equal amounts of TA were applied to a reproducible plexiglass surface and allowed to dry while undergoing one of the six techniques. The time to complete dryness was recorded for ten specimens for each of the six techniques. Results. Use of the Covering, OR Lights, and Hot Water Bath techniques were associated with a 25- (p = 0.042), 27- (p = 0.023), and 30-second (p = 0.009) reduction in drying time, respectively, when compared to controls. The UV Light (p = 0.404) and Fanning (p = 1.000) methods had no effect on drying time. Conclusion. Use of the Covering, OR Lights, and Hot Water Bath techniques present a means for reducing overall operating time for surgeons using TA for closure augmentation, which can increase intraoperative efficiency. Further studies are needed to validate this in vivo. Cite this article: Bone Jt Open 2022;3(8):607–610


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 45 - 45
24 Nov 2023
Dendoncker K Putzeys G Cornu O Nieuwenhuizen T Bertrand M Valster H Croes K
Full Access

Aim. Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine. With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ. Method. The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze drying (BC type A), after freeze drying (BC type B) and after gamma-irradiation. 0.5g of the impregnated bone grafts were incubated with 5ml of fetal calf serum (FCS) at 37°C. At 2, 4, 6, 8 and 24h of incubation 200µl of eluate was taken for analysis. After 24h the remaining FCS was removed, bone grafts were washed and new FCS (5ml) was added. Consecutive eluate samples were taken at 48, 72 and 96h of incubation. The concentration of CFZ in the eluates was measured with the validated UPLC-DAD method. Analysis was performed in triplicate. Results. The mean concentration of CFZ in the eluate obtained from BC type A incubated for 2h was higher compared to BC type B, respectively 581 mg/l and 297 mg/l. However, the elution profile is the same for both types: the CFZ concentration in the eluates drops within the first 24h from 581 mg/l to 365 mg/l (37%) for BC type A and from 297 mg/l to 132 mg/l (56%) for BC type B. After 24h no further significant CFZ release is seen. Impregnation of the bone chips before or after gamma irradiation did not affect this elution profile. Conclusions. Bone chips treated with scCO2 show a comparable elution pattern compared to non-scCO2 treated bone chips. AB release depends on the properties of the AB, making it impossible to copy the same impregnation protocol for different antibiotics. The stability of CFZ in solution at 37°C and its release are a major concern when establishing an impregnation protocol with CFZ


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 21 - 21
7 Nov 2023
Molepo M Hohmann E Oduoye S Myburgh J van Zyl R Keough N
Full Access

This study aimed to describe the morphology of the coracoid process and determine the frequency of commonly observed patterns. The second purpose was to determine the location of inferior tunnel exit with superior based tunnel drilling and the superior tunnel exit with inferior based tunnel drilling. A sample of 100 dry scapulae for the morphology aspect and 52 cadaveric embalmed shoulders for tunnel drilling were used. The coracoid process was described qualitatively and categorized into 6 different shapes. A transcoracoid tunnel was drilled at the centre of the base. Twenty-six shoulders were used for the superior-inferior tunnel drilling approach and 26 for the inferior-superior tunnel drilling approach. The distances to the margins of the coracoid process, from both the entry and exit points of the tunnel, were measured. Eight coracoid processes were of convex shape, 31 of hooked shape, 18 of irregular shape, 18 of narrow shape, 25 of straight shape, and 13 of wide shape. The mean difference for the distances between superior entry and inferior exit from the apex was Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation 3.65+3.51mm (p=0.002); 1.57+2.27mm for the lateral border (p=0.40) and 5.53+3.45mm for the medial border (p=0.001). The mean difference for the distances between inferior entry and superior exit from the apex was 16.95+3.11mm (p=0.0001); 6.51+3.2mm for the lateral border (p=0.40) and 1.03+2.32 mm for the medial border (p=0.045). The most common coracoid process shape observed was a hooked pattern. Both superior to inferior and inferior to superior tunnel drilling directed the tunnel from a more anterior and medial entry to a posterior-lateral exit. Superior to inferior drilling resulted in a more posteriorly angled tunnel. With inferior to superior tunnel drilling cortical breaks were observed at the inferior and medial margin of the tunnel


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 89 - 89
10 Feb 2023
Parker J Lim K Woodfield T Calhaem I Hooper. G
Full Access

Hypochlorous acid (HOCl) is a potent anti-bacterial agent which could reduce periprosthetic joint infection. Early infection complications in joint replacements are often considered to be due to local contamination at the time of surgery and result in a significant socioeconomic cost. Current theatre cleaning procedures produce “clean” operating theatres which still contain bacteria (colony forming units, CFU). Reducing this bacterial load may reduce local contamination at the time of surgery. HOCl is produced naturally in the human neutrophil and has been implicated as the primary agent involved in bacterial killing during this process. In vitro research confirms its efficacy against essentially all clinically relevant bacteria. The recent advent of commercial production of HOCl, delivered as a fog, has resulted in extensive use in the food industry. Reported lack of corrosion and high anti-bacterial potency are seen as two key factors for the use of HOCl in the orthopaedic environment. Prior work by the authors comparing human cell toxicity of HOCl, chlorhexidine and iodine solutions shows favourable results. This study evaluates use of neutral HOCl applied as a dry room fog to decrease bacteria in the operating theatre environment. Using an animal operating theatre as the test site, bacterial swabs were taken from ten 100cm. 2. sample areas before standard cleaning with detergent, after standard cleaning, and again after 60 minutes exposure to HOCl fog. After standard cleaning, 6 of 10 sample sites recorded significant bacterial growth (>10 CFU/100cm. 2. ). After exposure to HOCl fog, growth in all 10 sites was below detection limits (<10 CFU/100cm. 2. ). This was repeated with specific exposure to Staphylococcus aureus and Escherichia coli. We can conclude that HOCl is effective when used as a fogging agent to reduce bacterial loading within an operating theatre environment and as such has significant potential to reduce intraoperative contamination and periprosthetic infection


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 9 - 9
22 Nov 2024
Wali R Miller C Harrison C Stafford G Hatton P
Full Access

Introduction. In specific conditions, infection may lead to bone loss and is difficult to treat. 1. Current clinical approaches rely on the introduction of antibiotics. While these may be effective, there are concerns regarding the rise of antimicrobial resistance. There is therefore interest in the development of antimicrobial bone graft substitutes for dental and trauma surgery. Aim & Objectives. The incorporation of zinc into biomaterials has been shown to confer broad spectrum antimicrobial activity, but this has not yet been applied to the development of a commercial bone graft substitute. The aim of this research was therefore to prepare and characterise a series of zinc-substituted nanoscale hydroxyapatite (nHA) materials, including evaluation of antimicrobial activity. Method. Zinc (Zn) substituted nHA materials were prepared (0, 5, 10, 15 & 20 mol.% Zn) using a wet chemical precipitation method with a rapid mixing. (2). The reaction was carried out using zinc hydroxide at pH 10. The suspension formed was washed and dried into both powder & paste forms. The resultant powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The antimicrobial activity was evaluated against Staphylococcus aureus (S8650 strain - isolated from an osteomyelitis case), by two techniques. The Miles and Misra method was applied to determine the number of colony-forming units (CFUs) in bacterial suspensions incubated with pastes. Secondly, a biofilm initialization method was used to evaluate the capacity of the materials to prevent biofilm formation. One-way analysis of variance (ANOVA) was used for the statistical analysis and results with p-value < 0.05 were considered statistically significant. Results. XRD indicated the formation of pure hydroxyapatite with up to 10 mol.% Zn without any side products. However, when Zn was increased to 15 & 20 mol %, zinc oxide (ZnO) peaks were detected. The TEM showed nanoscale needle-like particles when Zn was increased compared to nHA particles. Regarding the antibacterial activity, ZnHA pastes at all concentrations caused a significant reduction in bacterial CFUs in a dose-dependent manner (50, 100 & 200 mg). Additionally, even the lowest zinc substitution (5 mol.%) significantly reduced biofilm formation. Conclusion. The results demonstrated a novel method to produce a Zn-substituted nHA that showed antimicrobial activity against a pathogen isolated from a bone infection


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 64 - 64
1 Dec 2022
Orloff LE Carsen S Imbeault P Benoit D
Full Access

Anterior cruciate ligament (ACL) injuries have been increasing, especially amongst adolescents. These injuries can increase the risk for early-onset knee osteoarthritis (OA). The consequences of late-stage knee OA include structural joint change, functional limitations and persistent pain. Interleukin-6 (IL-6) is a pro-inflammatory biomarker reflecting knee joint healing, and increasing evidence suggests that IL-6 may play a critical role in the development of pathological pain. The purpose of this study was to determine the relationship between subjective knee joint pain and function, and synovial fluid concentrations of the pro-inflammatory cytokine IL-6, in adolescents undergoing anterior cruciate ligament reconstruction surgery. Seven youth (12-17 yrs.) undergoing anterior cruciate ligament (ACL) reconstruction surgery participated in this study. They completed the Pedi International Knee Documentation Committee (Pedi-IKDC) questionnaire on knee joint pain and function. At the time of their ACL reconstruction surgery, synovial fluid samples were collected through aspiration to dryness with a syringe without saline flushing. IL-6 levels in synovial fluid (sf) were measured using enzyme linked immunosorbent assay. Spearman's rho correlation coefficient was used to determine the correlation between IL-6 levels and scores from the Pedi-IKDC questionnaire. There was a statistically significant correlation between sfIL-6 levels and the Pedi-IKDC Symptoms score (-.929, p=0.003). The correlations between sfIL-6 and Pedi-IKDC activity score (.546, p = .234) and between sfIL-6 and total Pedi-IKDC score (-.536, p = .215) were not statistically significant. This is the first study to evaluate IL-6 as a biomarker of knee joint healing in an adolescent population, reported a very strong correlation (-.929, p=0.003) between IL-6 in knee joint synovial fluid and a subjective questionnaire on knee joint pain. These findings provide preliminary scientific evidence regarding the relationship between knee joint pain, as determined by a validated questionnaire and the inflammatory and healing status of the patient's knee. This study provides a basis and justification for future longitudinal research on biomarkers of knee joint healing in patients throughout their recovery and rehabilitation process. Incorporating physiological and psychosocial variables to current return-to-activity (RTA) criteria has the potential to improve decision making for adolescents following ACL reconstruction to reduce premature RTA thereby reducing the risk of re-injury and risk of early-onset knee OA in adolescents


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 82 - 82
1 Feb 2020
Zobel S Huber G King M Pfeiffer D Morlock M
Full Access

Introduction. During revision surgery, the active electrode of an electrocautery device may get close to the implant, potentially provoking a flashover. Incidents have been reported, where in situ retained hip stems failed after isolated cup revision. Different sizes of discoloured areas, probably induced by electrocautery contact, were found at the starting point of the fracture. The effect of the flashover on the implant material is yet not fully understood. The aim of this study was to investigate the fatigue strength reduction of Ti-6Al-4V titanium alloy after electrocautery contact. Material and Methods. 16 titanium rods (Ti-6Al-4V, extra low interstitial elements, according to DIN 17851, ⊘ 5 mm, 120 mm length) were stress-relief annealed (normal atmosphere, holding temperature 622 °C, holding time 2 h) and cooled in air. An implant specific surface roughness was achieved by chemical and electrolytic polishing (Ra = 0.307, Rz = 1.910). Dry (n = 6) and wet (n = 6, 5 µl phosphate buffered saline) flashovers were applied with a hand-held electrode of a high-frequency generator (Aesculap AG, GN 640, monopolar cut mode, output power 300 W, modelled patient resistance 500 Ω). The size of the generated discoloured area on the rod's surface - representative for the heat affected zone (HAZ) - was determined using laser microscopy (VK-150x, Keyence, Japan). Rods without flashover (n = 4) served as control. The fatigue strength of the rods was determined under dynamic (10 Hz, load ratio R = 0.1), force-controlled four-point bending (FGB Steinbach GmbH, Germany) with swelling load (numerical bending stress 852 MPa with a bending moment of 17.8 Nm) until failure of the rods. The applied bending stress was estimated using a finite-element-model of a hip stem during stumbling. Metallurgical cuts were made to analyse the microstructure. Results. The control rods failed at the pushers of the setup (median: 94,550, range: 194,000 cycles). The rods with flashover failed directly at the HAZ significantly earlier than the control rods (p = 0.018). The analysis of the microstructure showed a transformation of the equiaxed α+β microstructure to a bimodal state. The size of the HAZs were equal for the dry (median: 1.51 mm. 2. , range: 5.68 mm. 2. ) and wet flashovers (median: 0.92 mm. 2. , range: 2.50 mm. 2. , p = 0.792). The cycles to failure were smaller for the dry flashover (median: 22,650 cycles, range: 5,700) than the wet flashover but not reaching statistical significance (median: 32,200, range: 57,900; p = 0.052). No correlation between the dimension of the HAZs and the cycles to failure was found (dry: r. 2. = 0.019, p = 0.8; wet: r. 2. = 0.015, p = 0.721). Discussion. Flashovers induced by an electrocautery device reduce the fatigue strength of Ti-6Al-4V. Since no correlation between the size of the HAZs and the cycles to failure was found, every contact between electrocautery devices and metal implants should be avoided. For any figures or tables, please contact authors directly


Bone & Joint Open
Vol. 1, Issue 7 | Pages 330 - 338
3 Jul 2020
Ajayi B Trompeter A Arnander M Sedgwick P Lui DF

Aims. The first death in the UK caused by COVID-19 occurred on 5 March 2020. We aim to describe the clinical characteristics and outcomes of major trauma and orthopaedic patients admitted in the early COVID-19 era. Methods. A prospective trauma registry was reviewed at a Level 1 Major Trauma Centre. We divided patients into Group A, 40 days prior to 5 March 2020, and into Group B, 40 days after. Results. A total of 657 consecutive trauma and orthopaedic patients were identified with a mean age of 55 years (8 to 98; standard deviation (SD) 22.52) and 393 (59.8%) were males. In all, 344 (approximately 50%) of admissions were major trauma. Group A had 421 patients, decreasing to 236 patients in Group B (36%). Mechanism of injury (MOI) was commonly a fall in 351 (52.4%) patients, but road traffic accidents (RTAs) increased from 56 (13.3%) in group A to 51 (21.6%) in group B (p = 0.030). ICU admissions decreased from 26 (6.2%) in group A to 5 (2.1%) in group B. Overall, 39 patients tested positive for COVID-19 with mean age of 73 years (28 to 98; SD 17.99) and 22 (56.4%) males. Common symptoms were dyspnoea, dry cough, and pyrexia. Of these patients, 27 (69.2%) were nosocomial infections and two (5.1%) of these patients required intensive care unit (ICU) admission with 8/39 mortality (20.5%). Of the patients who died, 50% were older and had underlying comorbidities (hypertension and cardiovascular disease, dementia, arthritis). Conclusion. Trauma admissions decreased in the lockdown phase with an increased incidence of RTAs. Nosocomial infection was common in 27 (69.2%) of those with COVID-19. Symptoms and comorbidities were consistent with previous reports with noted inclusion of dementia and arthritis. The mortality rate of trauma and COVID-19 was 20.5%, mainly in octogenarians, and COVID-19 surgical mortality was 15.4%. Cite this article: Bone Joint Open 2020;1-7:330–338


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 194 - 194
1 Sep 2012
Tong J
Full Access

Introduction. Damage development in cemented acetabular replacements has been studied in bovine pelvic bones under long-term physiological. 1. loading, albeit dry, conditions, using a specially designed hip simulator. 2. In this work we report further experimental results from testing in wet condition in a new custom designed environmental chamber. Damage was detected and monitored using mCT scanning at regular intervals of the experiments. Two dimensional projections in the axial, sagittal and coronal planes were extracted from the 3D data for fatigue damage identification. The simulated mechanical and biological effects on the initiation and evolution of the damage of cemented acetabular reconstructs were examined and compared with those under dry condition. Materials and methods. Bovine bones were treated and reamed to receive a cemented polyethylene cup (Charnley ogee, Depuy Int) in the standard position. Standard cementing technique was utilised to apply the cement (CMW1, DePuy CMW) into the socket, with an average cement mantle thickness of 2–3 mm. The combined loading block included four routine activities, as measured by Bergmann et al. 1. , was programmed into a specially designed 4-station hip simulator for endurance testing of cement fixation. 2. A body weight of 125 kg was assumed to represent an upper bound load case and to accelerate the tests. A custom made environmental chamber (Fig. 1) was designed and built to accommodate saline solution (0.9% NaCl), where the temperature was kept constantly at 37°C. The implanted bone samples were removed from the test rig at regular intervals (100,000 and 200,000 cycles) and examined using a mCT scanner. Results and discussion. For the tests under dry condition. 2. , μCT images showed progressive development of radiolucent lines, usually in the superior-posterior quadrant near the dome region which led to gross failure; and the number of cycles to failure seems to be related to the type of physiological loadings in that the worst case was found to be descending stairs, followed by combined loading and normal walking. For the tests conducted under wet condition, debonding was detected at the bone-cement interface along the rim of the acetabulum (Fig. 2), as opposed to near the dome in the cases under dry condition. Under the same load magnitude, the survival life in cycles under wet condition is also drastically reduced (∼200,000) compared to ∼ 2,000,000 in dry condition. Conclusion. Preliminary endurance testing in physiological wet condition seems to suggest that interfacial debonding at the bone-cement interface near the rim is responsible for earlier crack initiation and failure of the acetabular fixation, as opposed to debonding near the dome region in dry condition


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 42 - 42
1 May 2019
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO. 2. gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used vs. use of pulsatile saline lavage alone. Meneghini used this pressurised carbon dioxide system to study the influence of NO tourniquet use in TKA. He found a significant lowering of opioid consumption postoperatively. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 288 - 288
1 Dec 2013
Puthumanapully PK Stewart M Browne M Dickinson A
Full Access

Introduction. Fatigue and wear at the head/stem modular junction of large diameter total hip replacements can be exacerbated as a result of the increase in frictional torque. In vivo, a “toggling,” anterior-posterior (A-P) movement of the head taper on the trunnion may facilitate corrosion in the presence of physiological fluids, leading to increased metal ion release. Clinically, metal ion release has been linked to the formation of pseudo tumours and tissue necrosis [1]. Aims. In this investigation, a large diameter metal on metal THR was tested on a rig designed to recreate the toggling motion at the head/stem junction. Post-test analyses are conducted to look for evidence of mechanical and corrosive damage. Methods and Materials. A 58 mm diameter metal head (12/14 taper) was assembled onto a sectioned Freeman stem affixed to custom designed rig that enabled both, axial loads and a frictional torque (for the AP toggle load) about the rotation of the femoral head to be applied as shown in Figure 1. A linear variable differential transformer (LVDT), which had a minimum resolution of 0.5 microns, was positioned in contact with the neck directly under the modular head to track A-P movements at the junction. An axial load of 150N with toggle loads varying between 100 (± 50N) and 200N (± 50N) at 1 Hz were run on 4 taper assemblies, 2 dry and 2 wet (incorporating a physiological fluid at the junction) between 400,000 and 600,000 cycles. Movement at the junction was recorded, followed by visual inspection and RedLux® surface profile analysis of the taper and trunnion. Results and Conclusion. The LVDT could successfully record movement at the junction. Initially (∼1000 cycles), the movement at the junction was found to be variable and between 5–10 microns, which can be attributed to the taper “bedding-in” on to the trunnion. The movement was then found to steadily increase before stabilising. The dry tapers recorded motion ranging between 5–15 microns, and between 10–20 microns for the wet taper. Visual inspection post testing showed minimal or no damage on the trunnion or taper surfaces on the dry tests. However, the trunnion and taper on the wet samples displayed marks and scratches on the surface (Figure 2). In addition, there was visible surface discolouration on both wet taper assemblies but none observed on the dry assemblies. This was further corroborated by Redlux topography measurements that also showed that material had been removed from both surfaces. The pilot study showed that A-P toggle movements at the junction could be produced by incorporating torque about the rotation of the head. Damage was evident on both the trunnion and taper surfaces, and discoloration was observed at the junction when fluid was introduced


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 124 - 124
1 Jun 2018
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO2 gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used versus use of pulsatile saline lavage alone. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 174 - 174
1 Dec 2013
Bertmaring H Preuss R Streicher R
Full Access

INTRODUCTION:. In order to obtain a secure taper connection it is advised to clean and dry the metal cup before assembling a ceramic insert. A slight axial tap using a plastic impactor completes the insertion procedure. There are a few reported cases that the taper connection failed intraoperatively although it was inserted and impacted as recommended. A conceivable reason seems to be a high amount of fluid in the gap between insert and cup (e.g. from rinsing process, blood) that prevent the insert from being securely fixed due to its incompressibility. Methods:. Cups embedded in a cast resin have been used in an appropriate impaction test setup. Four different amounts of 1.75% polyvinyl pyrrolidone solution with comparable viscosity to that of blood were filled into the metal cups (figure 1). To obtain reference values, tests were made with dry metal cups (0%), too. Three different in-vivo like test conditions were considered:. The fluid . 1. cannot escape from the gap. 2. can permeate through a low permeable screen cloth. 3. can permeate through a high permeable screen cloth. The screen cloth should represent different cancellous bone densities. Ten Ceramic inserts of each size (28 and 36 mm) made of pure alumina (BIOLOX® forte) were impacted axially into the cups resulting in a peak force of approximately 1200 N, measured by a load cell (see figure 2). Ensuring the exact level of fluid before impaction for conditions 2 and 3, two different hydrophobic screen clothes were fixed across the central hole of the cup. During impaction the fluid could permeate through the screen cloth. To assess the connection strength after impaction, push-out forces have been measured. RESULTS. The values of condition 1 showed higher impaction forces at higher fill levels. In contrast, the values for condition 3 decrease at a higher filling level (100%, p = 0.03). The standard deviations of the impaction forces increased with increasing filling level. At 90% and 100% filling level the push-out forces were very low (see figure 3). Condition 1 even showed a push-out force of 0 N (filling level 100%). All values also showed very high standard deviations. DISCUSSION. The results show that a low level of fluid only had a minor influence on impaction and push-out forces. They also show that impacting against a fluid filling (filling level 90–100%) does not lead to sufficient connection strength. Most likely, the fluid reduces the relative motion between insert and cup due to its incompressibility, leading to lower locking strength. The possibility of drain through the cup holes reduces the risk of insecure connection strength (see figure 3). The findings and the proposed mechanism suggest that the same risk exists for non-ceramic inserts. In conclusion, it is necessary to clean and dry the cup intraoperatively before assembling the insert. Nevertheless, the paper does only reflect one aspect of the surgical procedure. For proper handling of the ceramic components, the IFU of the manufacturer have to be followed


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 146 - 146
1 Feb 2017
Grostefon J Nelson W
Full Access

Introduction. Since the introduction of modular hip taper junctions, corrosion has been studied yet the clinical effect remains unclear. Mechanically assisted corrosion and crevice corrosion are thought to be the primary clinical processes driving taper corrosion. Like all corrosion reactions, these processes require the taper junction to be in contact with an electrolyte. This study investigates the effect of sealing the taper junction from the environment on the mechanically-induced corrosion of a modular hip taper junction. Methods. A short-term corrosion fatigue test was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN). Ten specimens were assembled with a 1.1 kN press load and sealed with silicone sealant (Dow-Corning 732 Multi-Purpose Sealant). Prior to assembly five of these specimens were assembled with the taper junction having been wetted with phosphate buffered saline before assembly; the rest were assembled dry. Specimens were then immersed in phosphate buffered saline and a potentiostat was used to maintain the potential of the specimen at −50mV vs. Ag/AgCl. Incrementally larger loads were applied to the head of the specimen until a 4000N maximum load was reached. The average currents generated during this test was used to assess the corrosion performance of the specimens. The data from the sealed specimens was compared to a control group, which were wetted before assembly but not sealed. Results. In all cases the corrosion of the sealed specimens did not appear to increase in response to the cyclic load; throughout the test, the corrosion did not increase over the baseline anodic current of roughly 0.25 μA. In contrast, the unsealed controls experienced average corrosion currents of around 5 μA at the maximum load, and an average current of 2.0±0.93 µA over the entire test. The wet and dry sealed assembly specimens both resulted in significantly lower average currents of 0.24±0.09 µA and 0.25±0.09 µA, respectively. Discussion. Test specimens with sealed taper junctions to prevent fluid and ion ingress and egress resulted in no measurably increased corrosion currents compared to the baseline currents in the ambient fluid. The wetted sealed specimens might possibly be subject to corrosion; however the corrosion process and effects in this case may be isolated within the taper junction. This test indicates mechanically assisted corrosion does not occur if the taper junction is not exposed to an electrolyte. Significance. This study demonstrates that mechanically induced corrosion can be greatly reduced or prevented by sealing the taper junction to prevent the ingress of electrolyte


Recently, our lab has made observations of metal damage patterns from retrieval studies that appeared to be cellular in nature [1]. This type of damage presented on about 74% of the retrieved implants and was attributed to inflammatory cells (termed ICI corrosion) [1]. An alternate hypothesis arose surrounding the use of electrosurgery in total joint arthroplasty (TJA). In TJA, where surgery occurs around metallic devices, the interactions of the high voltage, high frequency current created by an electrosurgical generator and the implant need to be better understood. In order to explore the effects electrosurgical currents have on metal implants, the interaction of a model system of highly polished metal disks and a standard electrosurgical generator (ConMed, Utica, NY) was evaluated in various modes and power settings. The disks were made of CoCrMo or Ti-6Al-4V alloys and were polished to a mirror finish for use and placed directly on the return electrode pad used in patients. Both coagulation and cut modes were evaluated, as well as both monopolar and bipolar configurations in wet and dry conditions using a blade-shaped tip. In wet cases, the disks were wet with phosphate buffered saline prior to the test to simulate body fluids in contact with the implant during current application. In all cases, surface damage was generated on both surfaces and was readily observed as a direct result of the current interacting with the metal (Fig. 1 and 2). Direct contact with the metal, regardless of a dry or wet surface, resulted in pitting and oxide buildup at the contact area. Non-contact activation in proximity to the surface or contact with fluid on the surface caused arcing and created damage that was more widespread over the area of fluid contact with the surface. The damage patterns created on the wetted surface by the electrosurgical unit looked very similar to the patterns we previously attributed to inflammatory cells. More specifically, it produced circular, ruffled areas with centralized pits and occasionally presented trail- and weld-like features (Fig. 2). While these results show that some of the damage previously reported to be from ICI corrosion is indeed the result of electrosurgery, there are still cases in retrievals that cannot be explained by this process and the corrosion reaction to alloys exposed to ROS-based molecules demonstrate significant acceleration of corrosion. Thus, ICI corrosion is still a viable hypothesis. Surgeons utilizing electrosurgical systems in proximity to metallic orthopedic implants need to exercise caution as the discharge of electrical energy through these implants can induce localized surface damage and may result in other adverse effects to the metal implants. Ultimately, we would like to update the community on the nature of the damage we previously reported and more importantly bring to light the possibility of surgeon-induced damage to the implant as a result of electrosurgical methods