Advertisement for orthosearch.org.uk
Results 1 - 20 of 32
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 51 - 51
1 Mar 2012
Ha YC Cho MR Park KH Kim SY Koo KH
Full Access

Introduction. Long-term use of bisphosphonates has been known to induce femoral insufficiency fracture in osteoporotic patients. We followed patients who had femoral insufficiency fractures after a long-term use of bisphosphonates. Methods. Eleven patients (14 hips) were diagnosed as having an insufficiency fracture of the femur after long-term (> 4 years) use of bisphosphonate to treat osteoporosis between January 2002 and December 2008. All patients were women who had a mean age of 68 years (range, 57 to 82 years). The fracture site was located in the subtrochanteric area in 6 hips and the femoral shaft in 8 hips. Three patients had bilateral involvement. These patients were followed-up for a mean of 27 months (range, 12 to 60 months). Results. Five hips in five patients displaced during the follow-up period. The mean period from the diagnosis of insufficiency fracture to the displacement was 10 months (range, 1 to 19 months). Five hips (five patients) underwent internal fixation due to persistent pain. Thus, during the follow-up of 27 months, operation was necessary in 71% (10 hips) of 14 insufficiency fractures. Four hips (four patients) that did not undergo any operation had persistent pain at the latest follow-up. Conclusion. The insufficiency fractures after prolonged bisphosphonate therapy seldom healed spontaneously and most of them required operation due to fracture displacement or persistent pain. We recommend preventive surgery to prevent further fracture displacement and persistent pain


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 19 - 19
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract. Objective. To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem. Methods. Three groups of six composite femurs were implanted with a fully coated collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Periprosthetic fractures of the femur were simulated using a previously published technique. Fracture torque and rotational displacement were measured and torsional stiffness and rotational work prior to fracture were estimated. High speed video recording identified if collar to calcar contact (CCC) occurred. Results between trials where calcar contact did and did not occur where compared using Mann-Whitney U tests. Results. Where CCC occurred versus where no CCC occurred, fracture torque was greater (47.33 [41.03 to 50.45] Nm versus 38.26 [33.70 to 43.60] Nm, p= 0.05), Rotational displacement was less (0.29 [0.27 to 0.39] rad versus 0.37 [0.33 to 0.49] rad, p= 0.07), torsional stiffness was greater (151.38 [123.04 to 160.42] rad. Nm-1 versus 96.86 [84.65 to 112.98] rad.Nm-1, p <0.01) and rotational work was similar (5.88 [4.67, 6.90] J versus 5.31 [4.40, 6.56] J, p= 0.6). Conclusions. Resistance to fracture and construct stiffness increased when a collared cementless stem made contact with the femoral calcar prior to fracture. These results demonstrate that calcar-collar contact and not a calcar collar per se, is crucial to maximising the protective effect of a medial calcar collar on the risk of post-operative periprosthetic fractures of the femur. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 41 - 41
1 Mar 2021
Lamb J Coltart O Adekanmbi I Stewart T Pandit H
Full Access

Abstract. Objective. To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro periprosthetic fracture. Methods. Three groups of six composite femurs were implanted with a collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Prior to each trial, the distances between anterior (ACC) and posterior (PCC) collar and the calcar were measured. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording identified when collar to calcar contact (CCC) occurred. The ACC and PCC were compared between trials where the CCC was and was not achieved. Regression estimated the odds of failing to achieve CCC for a given ACC or PCC. Results. CCC was achieved prior to fracture in all cases in group one, 50% in group two and 0% in group three. The median (range) ACC for those trials where CCC was achieved was 0.40 (0.00, 3.37) mm versus 6.15 (3.06 to 6.88) mm, where CCC was not achieved (p <0.01). The median (range) PCC for those trials where CCC was achieved was 0.85 (0.00 to 3.71) mm versus 5.97 (2.23 to 7.46) mm, where CCC was not achieved (p <0.01). Binomial logistic regression estimated risk of failure to obtain CCC increased 3.8 fold (95% confidence interval 1.6 to 30.2, p <0.05) for each millimetre of PCC. Conclusions. Increased separation between collar and calcar reduced the likelihood of calcar collar contact during a simulated periprosthetic fracture of the femur. Surgeons should aim to achieve a calcar-collar distance of less than 1mm following implantation to ensure calcar collar contact during periprosthetic femoral fracture and to reduce the risk of fracture. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 94 - 94
17 Apr 2023
Gupta P Butt S Dasari K Galhoum A Nandhara G
Full Access

The Nottingham Hip Fracture Score (NHFS) was developed in 2007 as a predictor of 30-day mortality after hip fracture surgery following a neck of femur fracture. The National Hip Fracture Database is the standard used which calculated their own score using national data. The NHF score for 30-day mortality was calculated for 50 patients presenting with a fractured neck femur injury between January 2020 to March 2020. A score <5 was classified as low risk and >/=5 as high risk. Aim was to assess the accuracy in calculating the Nottingham Hip Fracture Score against the National Hip Fracture Database. To explore whether it should it be routinely included during initial assessment to aid clinical management?. There was an increase in the number of mortalities observed in patients who belonged to the high-risk group (>=5) compared to the low risk group. COVID-19 positive patients had worse outcomes with average 30-day mortality of 6.78 compared to the average of 6.06. GEH NHF score per month showed significant accuracy against the NHFD scores. The identification of high-risk groups from their NHF score can allow for targeted optimisations and elucidation of risk factors easily gathered at the point of hospitalisation. The NHFS is a valuable tool and useful predictor to stratify the risk of 30-day mortality and 1-year mortality after hip fracture surgery. Inclusion of the score should be considered as mandatory Trust policy for neck of femur fracture patients to aid clinical management and improve patient safety overall


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 86 - 86
17 Apr 2023
Aljuaid M Alzahrani S Shurbaji S
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the natural history of the parameters that are used to assess both was a matter of essence. Nevertheless, clarification the picture of normal value in our society was the main aim of this study. However, Acetabular head index (AHI) and center edge angle (CEA) were the most sensitive indicative parameters for acetabular dysplasia. Hence, they were the main variables used in evaluation of acetabular development. A cross-sectional retrospective study that had been done in a tertiary center. Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. Images’ reports were reviewed to exclude those with tumors in the femur or pelvic bones. A total of 81 patients was included with 51% of them were males. The mean of age was 10.38± 3.96. CEA was measured using Wiberg technique, means of CEA were 33.71±6.53 and 36.50±7.39 for males and females, respectively. Nonetheless, AHI means were 83.81±6.10 and 84.66±4.17 for males and females, respectively. On the other hand, CEA was increasing by a factor 0.26 for each year (3-18, range). In addition, positive significant correlation was detected between CEA and age as found by linear regression r 2 0.460 (f(df1,79) =21.232, P ≤0.0001). Also, Body mass index (BMI) was positively correlated with CEA r 0.410, P 0.004). This study shows that obesity and aging are linked to increased CEA. Each ethnic group has its own normal values that must be studied to avoid premature diagnosis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 87 - 87
17 Apr 2023
Aljuaid M Alzahrani S Bazaid Z Zamil H
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the normal range of the parameters that are used to assess both was a matter of essence. Nevertheless, the main aim of this study was clarification the relationship between acetabular inclination (AI) and acetabular and femoral head arcs’ radii (AAR and FHAR). A cross-sectional retrospective study that had been done in a tertiary center where Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. A total of 84 patients was included with 52% of them were females. The mean of age was 30.38± 5.48. Also, Means of AI were 38.02±3.89 and 40.15±4.40 (P 0.02, significant gender difference) for males and females, respectively. Nonetheless, Head neck shaft angle (HNSA) means were 129.90±5.55 and 130.72±6.62 for males and females, respectively. However, AAR and FHAR means for males and females were 21.3±3.1mm, 19.9±3.1mm, P 0.04 and 19.7±3.1mm, 18.1±2.7mm, P 0.019, respectively. In addition, negative significant correlations were detected between AI against AAR, FHAR, HNSA and body mass index (BMI) (r 0.529, P ≤0.0001, r 0.445, P ≤0.0001, r 0.238, P 0.029, r 0.329, P ≤0.007, respectively). On the other hand, high BMI was associated with AAR and FHAR (r 0.577, P 0.0001 and r 0.266, p 0.031, respectively). This study shows that high AI is correlated with lower AAR, FHAR. Each ethnic group has its own normal values that must be studied to tailor the path for future implications in clinical setting


Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur. Methods. Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol. Results. In composite femur testing median fracture torque (IQR) was greater with a collared versus collarless implant (48.41 [42.60 to 50.27] Nm versus 45.12 [39.13 to 48.09] Nm, p= 0.4). Median rotational displacement (IQR) was less with a collared versus collarless implant (0.29 [0.27 to 0.31] radians versus 0.33 [0.32 to 0.34] radians, p= 0.07). Estimated rotary work was similar between groups (5.76 [4.92 to 6.64] J versus 5.21 [4.25 to 6.04] J, p= 0.4). Torsional stiffness was greater with a collared versus collarless implant (158.36 [152.61, 163.54] Nm per radian versus 138.79 [122.53, 140.59] Nm per radian, p= 0.5). Collarless stems were seen to move independently of the femur and fracture patterns originated at the calcar. Conclusions. Testing with composite femurs using an established protocol produced similar results to previously published studies using human femurs, but the difference between collared and collarless stems was smaller. The internal homogenous foam material in composite femurs does not accurately represent the heterogeneous cancellous bone which supports a femoral stem in vivo and may lead to overestimation of implant stability. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 125 - 125
1 Mar 2021
Eggermont F van der Wal G Westhoff P Laar A de Jong M Rozema T Kroon HM Ayu O Derikx L Dijkstra S Verdonschot N van der Linden YM Tanck E
Full Access

Patients with cancer and bone metastases can have an increased risk of fracturing their femur. Treatment is based on the impending fracture risk: patients with a high fracture risk are considered for prophylactic surgery, whereas low fracture risk patients are treated conservatively with radiotherapy to decrease pain. Current clinical guidelines suggest to determine fracture risk based on axial cortical involvement of the lesion on conventional radiographs, but that appears to be difficult. Therefore, we developed a patient-specific finite element (FE) computer model that has shown to be able to predict fracture risk in an experimental setting and in patients. The goal of this study was to determine whether patient-specific finite element (FE) computer models are better at predicting fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines. 45 patients (50 affected femurs) affected with predominantly lytic bone metastases who were treated with palliative radiotherapy for pain were included. CT scans were made and patients were followed for six months to determine whether or not they fractured their femur. Non-linear isotropic FE models were created with the patient-specific geometry and bone density obtained from the CT scans. Subsequently, an axial load was simulated on the models mimicking stance. Failure loads normalized for bodyweight (BW) were calculated for each femur. High and low fracture risks were determined using a failure load of 7.5 × BW as a threshold. Experienced assessors measured axial cortical involvement on conventional radiographs. Following clinical guidelines, patients with lesions larger than 30 mm were identified as having a high fracture risk. FE predictions were compared to clinical assessments by means of diagnostic accuracy values (sensitivity, specificity and positive (PPV) and negative predictive values (NPV)). Seven femurs (14%) fractured during follow-up. Median time to fracture was 8 weeks. FE models were better at predicting fracture risk in comparison to clinical assessments based on axial cortical involvement (sensitivity 100% vs. 86%, specificity 74% vs. 42%, PPV 39% vs. 19%, and NPV 100% vs. 95%, for the FE computer model vs. axial cortical involvement, respectively). We concluded that patient-specific FE computer models improve fracture risk predictions of femoral bone metastases in advanced cancer patients compared to clinical assessments based on axial cortical involvement, which is currently used in clinical guidelines. Therefore, we are initiating a pilot for clinical implementation of the FE model


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 121 - 121
1 Dec 2020
Haffner-Luntzer M Fischer V Ignatius A
Full Access

Mice are increasingly used for fracture healing research because of the possibility to use transgenic animals to conduct research on the molecular level. Mice from both sexes can be used, however, there is no consensus in the literature if fracture healing differs between female and male mice. Therefore, the aim of the present study was to analyze the similarities and differences in endochondral fracture healing between female and male C57BL/6J mice, since this mouse strain is mainly used in bone research. For that purpose, 12-weeks-old female and male mice received a standardized femur midshaft osteotomy stabilized by an external fixator. Mice were euthanized 10 and 21 days after fracture and bone regeneration was analyzed by biomechanical testing, µCT analysis, histology, immunohistochemistry and gene expression analysis. At day 21, male mice displayed a significantly larger fracture callus than female mice accompanied by higher number of osteoclasts, higher tissue mineral density and absolute values of bone volume, whereas relative bone volume to tissue volume ratio did not differ between the groups. Biomechanical testing revealed significantly increased bending stiffness in both fractured and intact femurs from male vs. female mice, whereas relative bending stiffness of fractured femurs related to the intact femurs did not differ. 10 days after fracture, male mice display significantly more cartilage and less fibrous tissue area in the fracture callus than female mice, whereas bone area did not differ. On the molecular level, male mice displayed increased active β-catenin expression in the fracture callus, whereas estrogen receptor α (ERα) expression was reduced. In conclusion, male mice showed more prominent cartilaginous callus formation, increased mineralization and whole callus tissue formation, whereas functional outcome after fracture did not differ from female mice. This might be due either to the heavier weight of male mice or because of differences in molecular signaling pathways


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 40 - 40
1 Mar 2021
Pley C Purohit K Krkovic M Abdulkarim A
Full Access

Open lower limb fractures are resource-intensive fractures, accounting for a significant proportion of the workload and cost of orthopaedic trauma units. A recent study has evaluated that the median cost of direct inpatient treatment of open lower-limb fractures in the National Health Service (NHS) is steep, at £19189 per patient. Healthcare providers are expected to be aware of the costs of treatments, although there is very limited dissemination of this information, neither on a national or local level. Older adults (>65 years old) are at an increased risk of the types of high-energy injuries that can result in open lower limb fractures. Generally, there remains a significant lack of literature surrounding the cost of open fracture management, especially in specific patient groups that are disproportionately affected by these fractures. This study has calculated the direct inpatient care costs of older adults with open lower limb fractures. Open lower limb fractures in adult patients over 65 years old treated at Addenbrooke's Hospital of Cambridge University Hospitals NHS Trust were identified over the period of March 2014-March 2019. Isolated fractures of the femur, tibia and fibula over this time period were included. Direct inpatient care costs were calculated using information about the sustained fracture, operative time, implant(s) and theatre kit(s) used, the number of patient bed-days on the orthopaedic ward and critical care unit, and the number of hours of inpatient physiotherapy received. Direct inpatient care costs were compared with the income received by our centre for each of these cases, according to Healthcare Resource Group (HRG) cost codes. Our data was also compared with existing literature on Patient Level Costing (PLC) figures for open lower limb fractures. We extracted data from 58 patients over the age of 65 years treated for open isolated lower limb fractures at Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, between March 2014 and March 2019. The median cost of inpatient care calculated in this study was £20,398 per patient, resulting in a financial loss to the hospital of £5113 per patient. When the results were disaggregated by sex, the median cost for an open lower limb fracture in a male patient was £20,886 compared to £19,304 in a female patient. Data were also disaggregated by the site of injury, which produced a median cost for an open femur fracture of £23,949, and £24,549 and £15,362 for open tibia and ankle fractures, respectively. The absence of published primary literature and clinical audits on this topic continues to hinder the inclusion of cost-effectiveness as an important factor in clinical decision-making. This study provides valuable insight into the true cost of open lower limb fractures in a key patient population in a Major Trauma Centre in England and highlights the large losses incurred by hospitals in treating these cases. These results support the revision of the remuneration structures in the NHS for the treatment of elderly patients with these injuries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 100 - 100
1 Nov 2021
Papadia D Comincini F Pirchio P Puggioni V Bellanova G
Full Access

Introduction and Objective. Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage. Materials and Methods. We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta tricalcium phosphate (β TCP), able to provide a long-term release of different antibiotics. We have included treatment of osteomyelitis and osteosynthesis of exposed fracture (Gustilo Anderson 1–3b) or fractures with soft tissue damage and high risk of contamination. Surgical technique included debridement filling bone defect with BS eluting antibiotics, osteosynthesis (plate, nail, external fixator, kirschner wire), soft tissue coverage, and systemic antibiotic therapy. Radiographic and clinical data including complications (wound dehiscence, superficial or deep infection, osteomyelitis) were collected. Results. We treated 25 patients (21 male, 4 female) with mean age 47 yrs. (range 21–83). The locations treated (for incidence) was: 9 femurs (7 plates, 2 nail), 7 calcanei (one bilateral), 3 tibias, 2 forearms, 2 metatarsi, 2 hands, 1 elbow. 6 patients had large bone loss. 7 patients had bone infections (4 were Cierny Madern 4); 8 patients had osteosynthesis of exposed fractures Gustilo Anderson 1–3b (9 plate, one bilateral calcaneus). 8 patients had treatment for pseudoarthrosis of exposed fractures (6 femurs, 1 forearm, 1 metatarsus) and 3 patients a prophylactic treatment for calcaneal fractures with soft tissue damage. 4 deep infection were treated with multiple surgical debridement and new filling bone defect with BS eluting antibiotic with infection eradication. We have used a combination of vancomycin and gentamicin on 15 cases, vancomycin alone on 4 cases, combination of vancomycin and amikacin on 1 case and amikacin and Linezolid in a targeted multi drug resistance. At final follow-up functional outcome was good in all cases with bone healing. Conclusions. Extensive debridement is a fundamental requisite for eradication of bone infections and contamination. Filling of the bone void with loaded bio-composite eluting diversifiable local antibiotics with synergistic anti-biofilm activity is desirable. Treatment of this bone defects are advantaged when combining his reconstruction with BS and the possibility of release high antibiotic concentration at least for 10 days. This is an important complementing prophylactic and therapeutic antimicrobial option with adjuvant role to systemic therapy that enlarges the success rate


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 111 - 111
1 Mar 2021
Tohidnezhad M Kubo Y Lichte P Roch D Heigl T Pour N Bergmann C Fragoulis A Gremse F Rosenhein S Jahr H
Full Access

The large bone defects with high risk of delayed bone union and pseudoarthrosis remain significant clinical challenge. Aim of the present study was the investigation of the critical size fracture healing process in transgenic mice using a novel beta-TCP scaffold. The luciferase transgenic mice strains (BALB/C-Tg(NF-kappaB-RE-luc)-Xen) and FVB/N-Tg(Vegfr2-luc)-Xen were used. Critical size fracture on femur was performed and stabilized using external fixation (RISystem). The fracture was bridged with a synthetic scaffold with and without Strontium. In consequence, the expression levels of NF-kappaB and VEGFR2 could be monitored in a longitudinal fashion using the Xenogen imaging system for two months. Animals were euthanized, serial section of femur were prepared, and the fracture sites were histologically examined. Sr reduced inflammation in the early phase of healing (15th days), but it was increased in the late healing stage. The level of VEGFR2 activity increases in the Sr doped beta-TCP group at the 15th day, the luciferase activity starts to decrease in this group and show significantly less activity compared to other groups in the second half. In the group without scaffold a connective tissue formation were observed. In both, beta-TCP and beta-TCP+Sr, the connection of newly formed tissue within integrated canals in scaffold was visible. Tissue formation in beta-TCP+Sr group was significantly higher than in the beta-TCP group, whereas the percentage of osseous tissue in relation to the newly formed tissue was in beta-TCP scaffold much more than in beta-TCP+ Sr groups. This study presents the first data regarding VEGFR2 and NF-kappB and angiogenesis activity profiles during fracture healing. The collected longitudinal data reduces the number of experimental animals in the study. Addition of strontium in scaffolds influenced the inflammation in different stage of the healing. This effect might influence the healing process and may prove to be advantageous for osteoporosis fracture healing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 54 - 54
1 Dec 2020
Kacmaz IE Egeli E Basa CD Zhamilov V
Full Access

Proximal femur fractures are common in the elderly population. The aim of this study was to determine the relationship between fracture type and proximal femoral geometric parameters. We retrospectively studied the electronic medical records of 85 elderly patients over 60 years of age who were admitted to the orthopedic department with hip fractures between January 2016 and January 2018 in a training and research hospital in Turkey. Age, fracture site, gender, implant type and proximal femoral geometry parameters (neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Patients with femoral neck fractures and femur intertrochanteric fractures were divided into two groups. The relationship between proximal femoral geometric parameters and fracture types was examined. SPSS 25.0 (IBM Corparation, Armonk, New York, United States) program was used to analyze the variables. Independent samples t test was used to compare the fracture types according to NSA, FHD, FND and FSD variables. A statistically significant difference was found in FSD (p=0,002) and age (p=0,019). FSD and age were found to be greater in intertrochanteric fractures than neck fractures. Gender, site, CEA, FNAL, HAL, NSA, FHD and FND parametres were not significantly different. In the literature, it is seen that different results have been reached in different studies. In a study conducted in the Chinese population, a significant difference was found between the two groups in NSA, CEA and FNAL measurements. In a study conducted in the Korean population, a significant difference was found only in NSA measurements. The FSD is generally associated with bone mineral densitometry in the literature and has been shown to be a risk factor for fracture formation. However, a study showing that there is a relationship between FSD and fracture type is not available in the literature. In this study; FSD was found to be higher in intertrochanteric fractures (p = 0.002). However, for the clinical significance of this difference, we think that larger patient series and biomechanical studies are needed


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 93 - 93
1 Apr 2018
Todorov D Gueorguiev B Zderic I Stoffel K Richards G Lenz M Enchev D Baltov A
Full Access

Introduction. The incidence of distal femoral fractures in the geriatric population is growing and represents the second most common insufficiency fracture of the femur following fractures around the hip joint. Fixation of fractures in patients with poor bone stock and early mobilisation in feeble and polymorbide patients is challenging. Development of a fixation approach for augmentation of conventional LISS (less invasive stabilization system) plating may result in superior long-term clinical outcomes and enhance safe weight bearing. Objectives. The aim of this study was to investigate the biomechanical competence of two different techniques of augmented LISS plating for treatment of osteoporotic fractures of the distal femur in comparison to conventional LISS plating. Materials & methods. Unstable distal femoral fracture AO/OTA 33-A3 was set in artificial femora with low density simulating osteoporotic bone. Three study groups, consisting of 10 specimens each, were created for instrumentation with a 9-hole LISS plate, a LISS plate with an additional 3D-printed polyactide cylindrical intramedullary graft, as well as a LISS plate plus a medial 3.5mm LCP (locking compression plate) - double plating. All specimens were non-destructively tested under axial (20–150N) and torsional (0–4Nm) quasi-static loading. Each construct was tested with two different working length (WL) configurations (long and short) of the LISS plate. Relative movements between the most medial superior and inferior osteotomy aspects were investigated via three-dimensional motion tracking analysis. Results. Interfragmentary displacement along the femur axis (mm) under 150N axial loading was 2.03±0.23/1.65±0.27 for LISS with long/short WL, 0.18±0.06/0.18±0.04 for double plating with long/short WL, and 0.40±0.05/0.30±0.05 for LISS plus graft with long/short WL. Shear interfragmentary displacement (mm) under 4Nm torsional loading in internal rotation was 1.16±0.17/0.92±0.11 for LISS with long/short WL, 0.40±0.10/0.43±0.07 for double plating with long/short WL, and 1.09±0.13/0.82±0.11 for LISS plus graft with long/short WL. Double plating revealed significantly smaller longitudinal and shear displacement compared to the other two techniques for long and short WL, respectively (P≤0.010). In addition, LISS plus graft fixation was with significantly less longitudinal displacement in comparison to conventional LISS plating for long and short WL, respectively (P≤0.001). Long WL resulted in significantly higher longitudinal and shear displacement compared to short WL for LISS and LISS plus graft (P≤0.032), but not for double plating (P=1.000). Conclusion. Intramedullary grafting resulted in significantly increased fracture stability under axial loading in comparison to conventional LISS plating. However, it was not efficient enough to achieve comparable stability to double plating


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability. We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives. Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years. Methods. A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)). Results. The incidence of cut-out across the sample was 5.6%, with a higher incidence in female patients. A significantly higher risk of this complication was correlated with lag-screw tip positioning in the upper part of the femoral head in the anteroposterior radiological view, posterior in the latero-lateral radiological view, and in the Cleveland peripheral zones. The tip-apex distance and the calcar-referenced tip-apex distance were found to be highly significant predictors of the risk of cut-out at cut-offs of 30.7 mm and 37.3 mm, respectively, but the former appeared more reliable than the latter in predicting the occurrence of this complication. Conclusion. The tip-apex distance remains the most accurate predictor of cut-out, which is significantly greater above a cut-off of 30.7 mm. Cite this article: G. Caruso, M. Bonomo, G. Valpiani, G. Salvatori, A. Gildone, V. Lorusso, L. Massari. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter?. Bone Joint Res 2017;6:481–488. DOI: 10.1302/2046-3758.68.BJR-2016-0299.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 23 - 23
1 Apr 2018
Krticka M Michlovska L Nekuda V Chamradova I Sojka K Kaiser J Zboncak M Vojtova L
Full Access

Introduction. In recent years, there has been a growing interest, in many fields of medicine, in the use of bone adhesives that are biodegraded to non-toxic products and resorbed after fulfilling their function in contact with living tissue. Biomechanical properties of newly developed bone glue, such as adhesion to bone and elastic modulus were tested in our study. Material and methods. Newly developed injectable biodegradable “self-setting” bone adhesive prepared from inorganic tricalcium phosphate powder and aqueous solution of organic thermogelling polymers was used for ex-vivo fixing fractured pig femur. Ex-vivo biomechanical tests were performed on 45 fresh pig femurs. Control group consist of 10 healthy bones, tested group was created by 35 bones with artificial fractures in diaphysis – oblique (O) and bending wedge (BW) type of fracture. Tested group were divided to following 4 subgroups (sg); sg1 – O fracture (n=15) glued together with 3 different type of bone adhesives, sg2 BW fracture (n=5) glued together with bone adhesive (n=5); sg3 – BW fracture fixed with locking compression plate (LCP), n=5; sg4 – BW fracture fixed with LCP in combination with bone adhesive. Three-point bending force and shear compression tests were performed on linear electrodynamic test instrument (ElectroPuls E10000, Instron). Femurs from sg1, sg2 and sg4 were tested on Micro-CT before and after biomechanical testing. Results. Shear compression tests in sg1 without amino acids modification showed that it is needed force of 0.5 mPa to recreate fracture, however, modification with amino acids increased glue strength to 3 mPa. Three-point bending force test in sg2 showed reduced force of 250 N to recreate fracture, anyhow in sg4 force needed to initiate the fracture was increased up to 5000 N. Conclusion. Newly developed injectable biodegradable “self- setting” bone adhesive represents new possibility how to fix small bone fragments in comminuted fractures and simultaneous chance how to improve and accelerate bone healing process. Acknowledgement. Project no. AOTEU-R-2016-064 was supported by AOTRAUMA, Switzerland


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 116 - 120
1 Jan 2007
Laing AJ Dillon JP Condon E Coffey JC Street JT Wang JH McGuinness AJ Redmond HP

Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1. +. ) and stem cell factor receptor, CD117 (c-kit. +. ) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1. +. mononuclear cell (MNC. sca-1+. ) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNC. sca-1+,c-kit+. counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1. +. mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 3 - 3
1 Jan 2017
Shun-Ping W
Full Access

Most of researches related to osteoporosis emphasized on trabecular bone loss. However, cortical bone has a prominent role on bone strength determined by bone quality, such as 2D or 3D geometry and microstructure of bone, not only density.[1] The focal thinning of cortical bone associated with aging in post-menopausal osteoporotic bone in the proximal femur may predispose a hip to fracture.[2, 3] As the trabecular bone is lost with progression of osteoporosis, the remaining cortical bone take more predominant role on bone strength.[4] To date, no effective osteoporotic agent was demonstrated to enhance both cortical geometric change and bone strength. Herein, we investigate the effect of Teriparatide (rhPTH(1–34)) on cortical bone at femoral diaphysis in OVX rat model. Twenty 12-week-old, female Sprague Dawley rats were used in this study. Bilateral ovariectomies were performed in 16 animals and randomly divided to three groups as control (N=6), OVX (N=6) and treatment group after OVX (OVX+F) by teriparatide (N=8). After twelve weeks of intervention, all rats were euthanized and right femurs and L5 vertebrae were extracted for further tests. All bone specimens were subjected to dual-energy X-ray absorptiometer (DXA) to evaluate areal bone mineral density (aBMD) of L5 vertebrae and femurs, micro-computed tomography (micro-CT) to analyze cortical bone parameters of femoral diaphysis, including cortical cross section area (CSA), cortical thickness and cross-sectional moment of inertia (CSMI). A three-point bending test was applied to determine fracture load of each femurs. Compare to OVX group, increase of aBMD by 14.6 % at L5 vertebrae and 13.3% at femoral diahpysis in treatment group. The cortical parameters of femoral diaphysis, CSA and cortical thickness, analyzed by micro-CT were significantly increased but the increasing tendency of CSMI did not have significant changes statistically after teriparatide intervention for 3 months duration. The increase of cortical bone strength (OVX vs OVX+F group, 120.72±2.72 vs 137.93±5.02, p < 0.05) at femoral diaphysis after treatment were also noticed. This study has point out a deeper look at geometric change of cortical bone after teriparatide treatment. This finding imply teirparatide has the ability to change the geometry of cortical bone and increase bone strength at femoral diaphysis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 8 - 8
1 Jan 2017
Saginov A Abiev T Tashmetov E
Full Access

The influence of rigid fixation and permanent compression on the results, the timing of fusion and rehabilitation after fractures of the femoral neck was investigated. A hip fracture is 60–80% of all fractures of the proximal femur. Despite recent advances in the treatment of this disease, the percentage of unsatisfactory outcomes as high as 25–35%. The choice of surgical treatment in femoral neck fractures in the elderly remains as controversial as it was almost 50 years ago when Speed called him as “the unsolved fracture. Hip replacement is currently the gold standard in the treatment of femoral neck fractures. But compared with the osteosynthesis operation takes more time, is accompanied by massive blood loss, sometimes the need for transfusion and a higher risk of deep wound infection. Given these facts the best is an indoor low-traumatic method of osteosynthesis locking. Compare of the results of femoral neck fractures using of osteosynthesis 3 blade nail, spongious screws and nail for permanent compression. A retrospective analysis of treatment of 252 patients from 1982 to 2015 with subcapitale and transcervical fractures of the femoral neck on the basis “RCTO named by H.J. Makazhanova”. In the research locales patients older than 40 years. All patients were divided according to the applied method of treatment: 1 group of 95 patients operated using a 3-blade-nail, in the 2nd group of 105 patients operated on spongious screws, in the 3 group of 52 patients operated nail for the permanent compression, authoring. All patients underwent x-ray examination before and after surgery. The average period from time of injury before performing the osteosynthesis amounted to 4–7 days. The follow-up period was 6–12 months. The results obtained clinically and radiographically divided into good, satisfactory, poor. Good and satisfactory results were regarded as positive, and poor results as negative. The average age of patients was 67.5 years. Among these female patients − 174 (69%), the male − 78 (31%). Traumatization more prone to elderly accounting for 206 (81.7%) cases, and only 46 (18.3%) in the middle age group. Analysis of the results of treatment showed positive results in 1 group − 69.5 %, in group 2 − 83.8 %, in group 3 − 96.2 %. In the first group of 29 (31.5 %) and in the second group of 17 (16.2 %) patients have postoperative complications: secondary displacement, nail migration, pseudarthrosis, necrosis of head. The patients of third group have postoperative complications in 2 cases (3.8 %): displacement of bone fragments according of retraumatization. Employability was restored in 1 group − 7–9 months, in group 2 - in 6–8 months, 3 group - through 6–6.5 months. 1). The method of choice for fresh fractures of the femoral neck, especially subcapital fractures in the elderly, is a minimally invasive method of closed compression osteosynthesis. 2). Comparative analysis of treatment results showed that for the consolidation and subcapital transcervical femoral neck fractures can provide rigid fixation of bone fragments. 3). The use of permanent compression is the best method, which shortens the period of consolidation