Advertisement for orthosearch.org.uk
Results 1 - 20 of 71
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 911 - 916
1 Jul 2015
Del Balso C Teeter MG Tan SC Lanting BA Howard JL

Tribocorrosion at the head–neck taper interface – so-called ‘taperosis’ – may be a source of metal ions and particulate debris in metal-on-polyethylene total hip arthroplasty (THA). We examined the effect of femoral head length on fretting and corrosion in retrieved head–neck tapers in vivo for a minimum of two years (mean 8.7 years; 2.6 to 15.9). A total of 56 femoral heads ranging from 28 mm to 3 mm to 28 mm + 8 mm, and 17 femoral stems featuring a single taper design were included in the study. Fretting and corrosion were scored in three horizontally oriented concentric zones of each taper by stereomicroscopy. Head length was observed to affect fretting (p = 0.03), with 28 mm + 8 mm femoral heads showing greater total fretting scores than all other head lengths. The central zone of the femoral head bore taper was subject to increased fretting damage (p = 0.01), regardless of head length or stem offset. High-offset femoral stems were associated with greater total fretting of the bore taper (p = 0.04). Increased fretting damage is seen with longer head lengths and high-offset femoral stems, and occurs within a central concentric zone of the femoral head bore taper. Further investigation is required to determine the effect of increased head size, and variations in head–neck taper design. Cite this article: Bone Joint J 2015; 97-B:911–16


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 20 - 26
1 Jul 2020
Romero J Wach A Silberberg S Chiu Y Westrich G Wright TM Padgett DE

Aims. This combined clinical and in vitro study aimed to determine the incidence of liner malseating in modular dual mobility (MDM) constructs in primary total hip arthroplasties (THAs) from a large volume arthroplasty centre, and determine whether malseating increases the potential for fretting and corrosion at the modular metal interface in malseated MDM constructs using a simulated corrosion chamber. Methods. For the clinical arm of the study, observers independently reviewed postoperative radiographs of 551 primary THAs using MDM constructs from a single manufacturer over a three-year period, to identify the incidence of MDM liner-shell malseating. Multivariable logistic regression analysis was performed to identify risk factors including age, sex, body mass index (BMI), cup design, cup size, and the MDM case volume of the surgeon. For the in vitro arm, six pristine MDM implants with cobalt-chrome liners were tested in a simulated corrosion chamber. Three were well-seated and three were malseated with 6° of canting. The liner-shell couples underwent cyclic loading of increasing magnitudes. Fretting current was measured throughout testing and the onset of fretting load was determined by analyzing the increase in average current. Results. The radiological review identified that 32 of 551 MDM liners (5.8%) were malseated. Malseating was noted in all of the three different cup designs. The incidence of malseating was significantly higher in low-volume MDM surgeons than high-volume MDM surgeons (p < 0.001). Pristine well-seated liners showed significantly lower fretting current values at all peak loads greater than 800 N (p < 0.044). Malseated liner-shell couples had lower fretting onset loads at 2,400 N. Conclusion. MDM malseating remains an issue that can occur in at least one in 20 patients at a high-volume arthroplasty centre. The onset of fretting and increased fretting current throughout loading cycles suggests susceptibility to corrosion when this occurs. These results support the hypothesis that malseated liners may be at risk for fretting corrosion. Clinicians should be aware of this phenomenon. Cite this article: Bone Joint J 2020;102-B(7 Supple B):20–26


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 386 - 389
1 Apr 2019
Hampton C Weitzler L Baral E Wright TM Bostrom MPG

Aims. The aim of this study was to evaluate fretting and corrosion in retrieved oxidized zirconium (OxZr; OXINIUM, Smith & Nephew, Memphis, Tennessee) femoral heads and compare the results with those from a matched cohort of cobalt-chromium (CoCr) femoral heads. Patients and Methods. A total of 28 OxZr femoral heads were retrieved during revision total hip arthroplasty (THA) and matched to 28 retrieved CoCr heads according to patient demographics. The mean age at index was 56 years (46 to 83) in the OxZr group and 70 years (46 to 92) in the CoCr group. Fretting and corrosion scores of the female taper of the heads were measured according to the modified Goldberg scoring method. Results. The OxZr-retrieved femoral heads showed significantly lower mean corrosion scores than the CoCr heads (1.3 (1 to 2.75) vs 2.1 (1 to 4); p < 0.01). Mean fretting scores were also significantly lower in the OxZr cohort when compared with the CoCr cohort (1.3 (1 to 2) vs 1.5 (1 to 2.25); p = 0.02). OxZr heads had more damage in the proximal region compared with the distal region of the head. Location had no impact on damage of CoCr heads. A trend towards increased corrosion in large heads was seen only in the CoCr heads, although this was not statistically significant. Conclusion. Retrieval analysis of OxZr femoral heads showed a decreased amount of fretting and corrosion compared with CoCr femoral heads. OxZr seems to be effective at reducing taper damage. Cite this article: Bone Joint J 2019;101-B:386–389


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 3 - 3
1 Oct 2019
Wright TM Wach A Romero JA Padgett DE
Full Access

Introduction. MDM implants can enhance stability in total hip replacement (THR), but complications include malseated liners and corrosion between the cobalt-chrome liner and titanium acetabular shell increased systemic metal ion levels. The liner-shell junction has the potential for fretting corrosion, and the corrosion could be exacerbated in malseated liners. We determined the potential for fretting corrosion in malseated versus well-seated liners using a mechanical electrochemical corrosion chamber. Methods. Four pristine MDM liners and shells were tested. Two liners were well-seated into their shells; two were canted at 6°. The liner-shell couples were assembled with a 2kN force after wetting the surfaces to promote a crevice environment conducive to corrosion. Couples were fixed in an electrochemical chamber at 40° inclination/20° anteversion to the load axis. The chamber was filled with phosphate buffered saline and setup as a three-electrode configuration: the shell as the working, a saturated calomel electrode as the reference, and a carbon rod as the counter electrode. A potentiostat held the system at −50mV throughout testing. After equilibration, couples underwent cyclic loading of increasing magnitudes from 100 to 3400N at 3 Hz. Fretting current was measured throughout, and the onset load for fretting was determined from the increase in average current. Results. Well-seated liners showed lower fretting current values at all peak compressive loads greater than 800 N (p<0.05). Canted liners demonstrated a fretting onset load of 2400 N, and fretting currents at greater than 2400 N were larger than those at lower peak compressive loads (p<0.05). Conclusion. The clinical consequences of MDM liner malseating remain unknown, but our results demonstrate earlier fretting current onset at lower peak loads when compared to well-seated liners. The onset loads were consistent with physiologic loads for daily activities. Our findings are significant given the potential for metallosis and adverse local tissue reactions. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 39 - 39
1 Aug 2018
Bostrom M
Full Access

Trunnionosis is an important failure mechanism of total hip arthroplasties as has recently been reported by the England and Wales national joint registry. Adverse local tissue reaction has also recently been associated with total hip arthroplasty (THA) with metal on polyethylene and ceramic on polyethylene articulations. The contributing factors in the mechanism of this failure pattern have not been elucidated, however they are likely multifactorial to include corrosion, fretting, taper design, implantation time, metal particulate debris, and wear at the metal on metal interface. Furthermore, dissimilar metallic combinations have been shown to exacerbate tribocorrosion. Authors have also reported on the use of ceramic heads to reduce trunniononis, however, tribocorrosion is still present. The majority of the literature regarding modular head neck taper fretting and corrosion involves cobalt chrome (CoCr) alloy. Little is known about head neck fretting corrosion with Oxinium femoral heads. To measure fretting, corrosion, and wear on the female tapers of retrieved Oxinium femoral heads and to determine how demographic and device factors affect these measurements. Ninety-two (92) retrieved 12/14 Oxinium heads were graded using the modified Goldberg score for subjectively grading corrosion and fretting on the taper surface. A novel silicone molding technique was validated, then applied to the female tapers of the retrievals and of two pristine Oxinium femoral heads, sizes 32+0 and 32+4. The molds were scanned using a Konica Minolta 3D laser scanner for reconstruction of the topography, dimensions, and surface features of the tapers. Geomagic software was used to align the retrieved to the pristine 3D models, allowing measurement of surface deviations (from wear) that had occurred while the heads were implanted. Patient demographic and implant data were correlated with Goldberg scores and wear deviations. The mean Goldberg score was 1.6. Goldberg scores of 1 (minimal), 2 (mild), and 3 (moderate) were present in 41 of the 92 heads (45%), 43 heads (47%), and 8 heads (8%) respectively. No implants received a score of 4 (severe). A positive significant correlation was found between length of implantation and increased female taper fretting (R = 0.436, p < 0.01). Wear deviations were significantly greater with 36mm heads compared to 32mm heads (p < 0.01) and with +4 offsets compared to 0 offsets (p = 0.013). Similar to previous work analyzing ceramic heads, Oxinium heads demonstrated predominately mild tribocorrosion grades, however do not eliminate tribocorrosion. Tribocorrosion was increased with large heads and increased offsets. This finding is consistent perhaps with greater mechanical burden that larger implants with increased offsets experience. Further investigation is needed to elucidate if Oxinium femoral heads reduce fretting and corrosion when compared to CoCr femoral heads


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 45 - 45
1 Oct 2020
Jacobs JJ McCarthy SM Hall DJ Levine BR Lundberg HJ Pourzal R
Full Access

Introduction. Total hip replacement failure due to fretting-corrosion remains a clinical concern. We recently described that damage within CoCrMo femoral heads can occur either by mechanically-dominated fretting processes leading to imprinting (via rough trunnions) and surface fretting (via smooth trunnions), or by a chemically-dominated etching process along preferential corrosion sites, termed “column damage”. These corrosion sites occur due to banding of the alloy microstructure. Banding is likely caused during thermo-mechanical processing of the alloy and is characterized by local molybdenum depletion. It was the objective of this study to quantify material loss from femoral heads with severe corrosion, identify the underlying damage modes, and to correlate the damage to the alloy's microstructure. Methods. 105 femoral heads with a Goldberg score 4 were evaluated. Coordinate measuring machine data was used to compute material loss and visualize damage features. Time in situ and stem alloy were identified. Metallographic samples were produced for each case. Grain size and banding were identified using light-microscopy. Mann-Whitney tests were conducted to compare material loss between groups. Results. Heads exhibited imprinting and column damage in 72 and 51 cases, respectively, with an overlap of 36 cases. 18 heads exhibited surface fretting only. All heads with column damage exhibited a banded microstructure. Heads with column damage had higher material loss (p=0.05) than those without. Also, heads with a banded microstructure had higher material loss (p=0.035) than those with a homogenous microstructure. Grain size, carbide content, and time did not correlate with material loss. Conclusion. Column damage is a detrimental damage mode within CoCrMo femoral heads that is directly linked to banding within its microstructure. It appears that banding even affects material loss before column damage is identifiable. These results indicate that implant alloy microstructure must be optimized to minimize the release of fretting-corrosion products and related implant failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 39 - 39
1 May 2018
Di Laura A Hothi H Henckel J Skinner J Hart A
Full Access

Introduction. Modular-neck hips have twice the rate of revision compared to fixed stems. Metal related pathology is the second most common reason for revision of implants featuring titanium stems with cobalt chrome necks. We aimed to understand the in-vivo performance of current designs and explore the rationale for their continued use. Methods. This study involved the examination of 200 retrieved modular-neck hips grouped according to the material used for their neck and stem. Groups A, B and C had neck/stems featuring CoCr/beta Ti-alloy (TMZF), CoCr/Ti6Al4V-alloy, and Ti6Al4V/Ti6Al4V respectively. Reasons for revision included pain, elevated metal ion levels and fluid collection. The stem-neck interface was assessed for severity of fretting/corrosion using metrology methods to compute linear wear penetration rate. Results. All retrieved implants with a CoCr/Ti combination showed evidence of moderate-severe fretting corrosion at the neck-stem junction. Maximum penetration depth rate in group A (median of 17.9μm/year) was higher than that in group B (median=5.8μm/year); p=0.0012 and group C (median=1.55μm/year), p=0.0095. Implant failure occurred 2-fold earlier in modular-neck hips with TMZF-alloy stems than Ti6Al4V. There was a strong correlation between severity of damage and time to revision in the TMZF group A (p < 0.0001) and between taper damage and Co levels (p < 0.0001) and Cr levels (p < 0.0012). Patient and implant data did not correlate with the amount of material loss observed, (p>0.05). Discussion. The findings are in agreement with registry data as designs with CoCr/Ti at neck/stem interfaces had the highest levels of fretting and corrosion and lower threshold for revision. Conclusion. Corrosion of metal orthopaedic implants remains of clinical concern to patients, surgeons and industry. In light of the findings, the continued use of modular-neck with a metal mismatch at the neck/stem junction is unfavourable and should be avoided


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 41 - 41
1 Apr 2022
Holleyman R Petheram T Reed M Burton P Malviya A
Full Access

Modular femoral stems offer surgeons great flexibility in biomechanical configuration during total hip replacement (THR) however introduce a taper-trunnion articulation known to be a source of additional wear debris through crevice, fretting and galvanic corrosion with mixed material combinations. This study aimed to investigate the influence of the trunnion bearing surface combination on the revision rate following primary total hip replacement (THR). All patients who underwent THR using an Exeter V40 cemented stainless steel stem and monobloc cemented polyethylene acetabular component (uncemented cups excluded to standardise the acetabular bearing surface and fixation) between January 2003 and December 2019 were extracted from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. The primary exposure was the head substrate used corresponding to the trunnion bearing. Time-to-event was determined by duration of implantation from primary surgery to revision with cases censored at death or end of available follow-up. Multivariable Cox proportional hazard models were used to identify predictors of all cause revision, adjusted for age, sex, American Association of Anaesthesiologists (ASA) grade, body mass index, surgical indication (osteoarthritis or other), and femoral head size. 229,870 THR were identified (66% female, mean age 73.4 years (SD 9.1) with the majority (91%) performed for osteoarthritis of which 4,598 were revised. Mean time from primary to revision or censoring was 6.8 years (SD 4.0). Multivariable modelling showed CoCr/SS trunnions were associated with a significantly higher risk of revision (hazard ratio (HR) 1.31 (95%CI 1.15 to 1.48, p<0.0001) as compared to SS/SS (reference). Both Alumina/SS (HR 0.74 (0.65 to 0.84), p<0.0001) and Zirconia/SS (HR 0.61 (0.49 to 0.74), p<0.0001) were associated with a significantly lower risk of revision. Ceramic heads on an Exeter stem were associated with significantly improved survivorship compared to metal heads in primary THR. CoCr/SS trunnion articulations had the poorest survivorship which may be contributed to by trunnionosis


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 463 - 472
1 Apr 2015
Panagiotidou A Meswania J Osman K Bolland B Latham J Skinner J Haddad FS Hart A Blunn G

The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt–chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. Cite this article: Bone Joint J 2015;97-B:463–72


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 4 - 4
1 Nov 2015
Osman K Panagiotidou A Meswania J Skinner J Hart A Haddad F Blunn G
Full Access

Introduction. Recent studies on large diameter femoral head hip replacements have implicated the modular taper junction as one of the significant sources of wear and corrosion products and this has been attributed to increased torque and bending on the taper interface. The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper junction and to investigate whether different material combinations also had an effect. Patients/Materials & Methods. We examined 1) Cobalt Chromium (CoCr) heads on CoCr stems 2) CoCr heads on Titanium alloy (Ti) stems and 3) Ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the femoral stem in the anterior posterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm where the force generated was equivalent to 0Nm, 9Nm, 14Nm and 18Nm. In Test 2 we investigated the effect of increasing bending moment by offsetting the application of axial load from the midline in the medial-lateral (ML). Offset increments equivalent to +0, +7 and +14 heads were used. For each test we used n=3 for each different material combination. Results. Significantly higher currents and amplitudes were seen with increasing frictional torque for all material combinations, however titanium alloy stems showed the highest corrosion. Increasing bending moments associated with using larger off-set heads produced more corrosion; with titanium alloy stems generally performing worse than cobalt chrome stems. Using ceramic heads did not prevent corrosion, but this was significantly reduced in all loading configurations. Discussion & Conclusion. This is the first study to quantify corrosion associated with different material combinations and loading conditions. Increasing frictional torque and bending, together with the material combination have a significant effect on the fretting corrosion at the taper modular junction. The best performing material combination was ceramic on CoCr


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 2 - 2
1 Oct 2019
Padgett DE Romero J Wach A Wright TM
Full Access

Introduction. Enhanced stability using dual mobility has been demonstrated but concerns about potential for corrosion in modular versions have been raised. Case reports of corrosion with malseated inserts have heightened concerns over this modularity. Some have claimed that malseating is rare, the true frequency is unknown. The purpose of our investigation was to determine the incidence of liner malseating in dual mobility implants at our institution. Methods. 567 hips had primary modular dual mobility hip replacements (Biomet or Stryker) between 2016 and 2018. Post-operative radiographs were reviewed independently by two reviewers to identify malseating. Liners were considered malseated if there was a noticeable gap between the metal liner and acetabular shell(figure 1). All liners deemed to be malseated were independently assessed by 3 separate reviewers for confirmation. Results. 32 of the 567 (5.6%) of the liners were found to be malseated. There were no malseated liners in the Biomet group (n=46). There were 32 malseated liners in 521 (6.1%) Stryker cups using 3 different Stryker shells: 19 of 229 (8.23%) in the Trident I hemispherical group; 5 of 99 (5.05%) in in the Trident I PSL group and 8 of 193 (4.15%) in the Trident II group. Conclusions. Our observation of malseating in 5.6% of patients is clearly disconcerting. The etiology of malseating is unclear ranging from soft tissue interposition to possible shell deformation leading to a geometric mismatch between cup and liner. The clinical impact of this observation is unknown but speculation regarding risk of micromotion along the interface leading to fretting and corrosion appears plausible. Further clinical followup will be necessary to determine whether these radiographic finding will ultimately impact clinical outcome. For any tables or figures, please contact the authors directly


Bone & Joint Open
Vol. 5, Issue 11 | Pages 971 - 976
5 Nov 2024
Baker G Hill J O'Neill F McChesney J Stevenson M Beverland D

Aims

In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes.

Methods

A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 5 - 5
1 Oct 2019
Sculco PK Nocon AA Selemon NA Diane A Demartino AM Mayman DJ Sculco TP
Full Access

Introduction. The anatomic dual mobility (ADM) technology utilized a monoblock cobalt chromium acetabular component. However, design limitations conferred difficulties controlling orientation during component insertion and inability to confirm full implant seating; the solution resulted in the creation of the modular dual mobility (MDM). The modular implant combines a standard titanium acetabular component and a cobalt chromium liner insert. Due to the metal-on-metal interface on MDM implants, fretting and corrosion releasing metal ions like previous metal-on-metal THA implants, were a concern. This study prospectively reviewed metal ions (cobalt, chromium and titanium) on patients who were at least 1 year post MDM implantation and compared them to patients with an ADM implant and evaluated radiographic seating of the components. Methods. All patients with ADM and MDM implants underwent evaluation of metal ions (cobalt, chromium and titanium) at their one year follow-up appointment. Radiographic evaluation for acetabular polar gaps was performed. Elevated metal ions were determined using standard laboratory ranges. Differences in baseline demographics were assessed using the Mann Whitney-U test and Fishers's exact test. Differences in metal ions and implant type were compared using the Fisher's exact tests. Results. Fifty consecutive patients (25 ADM and 25 MDM were included in the study. All patients in the ADM group were primary THR and all in the MDM group were revision THR. Mean age and BMI were 73 (+/−10) and 26 (+/−4) respectively. A majority of the participants were female (72%), overall mean length of implantation was 1.2 years. We found no difference in metal ion elevation between groups at a minimum of one year post implantation (cobalt, p=1.0, chromium, p=0.49; titanium p=1.0). Within the MDM and ADM cohorts, there were an equal number of patients with mildly elevated cobalt (n=6), as well as mildly elevated titanium (n=1). The ADM cohort had more patients with increased chromium when compared to the MDM cohort (ADM=1 vs MDM=0), but did not reach significance. There was one ADM patient with significantly elevated levels of cobalt and chromium probably related to prior spine fusion with dissimilar metal fixation. When reviewed as raw values, there was a difference in mean chromium levels between ADM and MDM cohorts (ADM=1.4 (+/− 2.5) vs MDM=1.2 (+/− 1.7), p=0.03; no other significant differences were found. An additional 32 ADM have been evaluated recently without elevation in cobalt or chromium levels. Of the total 55 ADM patients 4 had a 1mm polar gaps which filled in at 6–23 months postoperative. There were no polar gaps in the MDM series and one malseated liner. Conclusion. There were no significant differences in metal ion elevation minimum one year post implantation between primary ADM and revision MDM cohorts. This is encouraging based on the titanium/cobalt chrome interface in the MDM implant. Uncommon dome gaps in the monoblock ADM is not a clinical problem. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 13 - 13
1 Oct 2019
Gustafson JA Levine BR Jacobs JJ Pourzal R Lundberg HJ
Full Access

Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. 1. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey. 2. found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. 3. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5. th. percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers. To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads × 2 assembly sequences × 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force. Results. As expected, increasing assembly load led to increased contact area, pressures, and plasticity for both taper finishes. Rough tapers exhibited less total contact area at each loading level as compared to the smooth taper. Contact pressures were relatively similar across the stem taper finishes, except the 3-strike smooth taper, which exhibited the lowest contact pressures (Figure 2) and pull-off forces. The models assembled with one strike exhibited the greatest contact pressures, pull-off forces, and micro-groove plastic deformation (Figure 3). Conclusion. Employing 1-strike loads led to greater contact areas, pressures, pull-off forces, and plastic deformation of the stem taper micro-grooves as compared to tapers assembled with three strikes. Residual energy may be lost with subsequent assembly strikes, suggesting that one, firm strike maximizes taper assembly mechanics. These models will be used to identify the optimal design factors and impaction method to maximize stability of modular taper junctions. For any tables or figures, please contact the authors directly


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 598 - 603
1 May 2022
Siljander MP Gausden EB Wooster BM Karczewski D Sierra RJ Trousdale RT Abdel MP

Aims

The aim of this study was to evaluate the incidence of liner malseating in two commonly used dual-mobility (DM) designs. Secondary aims included determining the risk of dislocation, survival, and clinical outcomes.

Methods

We retrospectively identified 256 primary total hip arthroplasties (THAs) that included a DM component (144 Stryker MDM and 112 Zimmer-Biomet G7) in 233 patients, performed between January 2012 and December 2019. Postoperative radiographs were reviewed independently for malseating of the liner by five reviewers. The mean age of the patients at the time of THA was 66 years (18 to 93), 166 (65%) were female, and the mean BMI was 30 kg/m2 (17 to 57). The mean follow-up was 3.5 years (2.0 to 9.2).


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 858 - 864
18 Oct 2021
Guntin J Plummer D Della Valle C DeBenedetti A Nam D

Aims

Prior studies have identified that malseating of a modular dual mobility liner can occur, with previous reported incidences between 5.8% and 16.4%. The aim of this study was to determine the incidence of malseating in dual mobility implants at our institution, assess for risk factors for liner malseating, and investigate whether liner malseating has any impact on clinical outcomes after surgery.

Methods

We retrospectively reviewed the radiographs of 239 primary and revision total hip arthroplasties with a modular dual mobility liner. Two independent reviewers assessed radiographs for each patient twice for evidence of malseating, with a third observer acting as a tiebreaker. Univariate analysis was conducted to determine risk factors for malseating with Youden’s index used to identify cut-off points. Cohen’s kappa test was used to measure interobserver and intraobserver reliability.