Introduction and Objective. Some periprosthetic femoral fractures (PFFs) present history and radiographic aspect consistent with an atypical femoral fracture (AFF), fulfilling the criteria for AFF except that PFFs by themselves are excluded from the diagnosis of AFFs. The aim of this study was to evaluate in a single Institution series of PFFs if any of them could be considered a
Abstract. Introduction. In general the life expectancy of population is improving. This is causing to increase case load of peri-prosthesis fractures after joint replacements. We present our results of peri-prosthesis fracture around hip managed by revision arthroplasty. Methods. A retrospective analysis of 24 consecutive patients of
Introduction. Despite the implementation of numerous preventive measures in recent years, the persistent challenge of
Abstract. Objective. To compare the
With an aging population and increase in total knee arthroplasty,
Introduction. Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA
An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as
Introduction and Objective. Total shoulder replacement is a common elective procedure offered to patients with end stage arthritis. While most patients experience significant pain relief and improved function within months of surgery, some remain unsatisfied because of residual pain or dissatisfaction with their functional status. Among these patients, when laboratory workup eliminates infection as a possibility, corticosteroid injection (CSI) into the joint space, or on the
Introduction. The evaluation of treatment modalities for distal femur
The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. Objectives
Methods
Background. Periprosthetic osteolysis is the most common long-term complication of a total joint arthroplasty, often resulting in aseptic loosening of the implant. As we aim at developing a safe and minimally invasive implant refixation procedure, thorough characterisation of the properties of the
In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or
Abstract. Objective. To estimate the effect of calcar collar contact on
Background. Aseptic loosening of prostheses is the most common cause for failure in total joint arthroplasty. Particulate wear debris induces a non-stop inflammatory-like response resulting in the formation of a layer of fibrous
Abstract. Objective. To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro
Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose
While stable long-term clinical results have been achieved in total joint arthroplasty,
Periprosthetic femoral fractures can occur as a complication of total hip arthroplasty and are often challenging to treat as the mechanical scenario is influenced by the presence of the metal prosthesis within the bone. This research focuses on finding the optimum fixation for transverse, Vancouver type B1
Introduction. Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Materials and Methods. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal). Results. Medial loads produced higher bone tissue stresses when loading was applied along the implant axis. This was more prominent in the lower density bone, causing more than 3 times higher stresses in the highest region for both implants. Bone tissue stresses were also shown to be higher in the low density specimen, especially in the distal zone. The maximum bone tissue stress ratio for low/high density bone reached 4.4 below Implant 1 and 2.2 below Implant 2, occurring both with a medially-directed load. For both implants, the highest bone tissue stresses were predicted in the distal region than in the proximal region, with larger distal-to-proximal stress ratios below Implant 1 than Implant 2 (3.8 and 1.7, respectively). Discussion. Our µFE analyses show that the implant anchorage design clearly influences load transfer to the