Introduction. Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties. To address this clinical challenge,
Objectives. To compare the therapeutic potential of
Abstract. Objectives. Musculoskeletal injuries are the leading contributor to disability globally, yet current treatments do not offer complete restoration of the tissue. This has resulted in the exploration of novel interventions based on tissue engineering as a therapeutic solution. This study aimed to explore novel collagen sponges as scaffolds for bone tissue engineering as an initial step in the construction of tendon-bone co-culture constructs in vitro. Methods. Collagen sponges (Jellagen, UK), manufactured from Jellyfish collagen were seeded with 10,000 rat osteoblast cells (dROBs) and maintained in culture for 6 days (37°C, 5% CO. 2. ). Qualitative viability was assessed by a fluorescent Calcein-AM live cell stain and quantitively via the CYQUANT cell viability assay (Invitrogen, UK) on days 0, 1, 4 and 6 in culture (n=3 per time point). Digital imaging was also used to assess size and shape changes to the collagen sponge in culture. Results. The collagen sponge biomaterial supported dROB adhesion, viability and proliferation with an abundance of viable cells detected by fluorescent microscopy on day 6. Indeed, the quantitative assessment confirmed that cellular proliferation was evident with increases in fluorescence detected from 517 (± 88) RFU to 8730 ± (2228) RFU from day 0 to 6. In addition, the size of the collagen sponges appeared to decrease over time, indicating contraction of the collagen sponges in culture. Conclusions. This preliminary study has demonstrated that the novel collagen sponges support cellular attachment and proliferation of osteoblasts, and is an important first step in building a bone-tendon construct in vitro. Our future work is focussed on using the osteoblast-seeded sponges in combination with tendon cells, to build a co-culture to represent the bone-tendon interface in vitro. This work has the potential to advance the clinical translation of
Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic media. The remaining cells were placed in osteogenic media and were transfected with an adenovirus carrying the cDNA for bone morphogenetic protein-2 (BMP-2). We evaluated the
Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute. Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties. Histology, gene expression and mass spectrometry were performed on native tissue to investigate tissue architecture, matrix components, cell populations and protein expression regionally across the meniscus. 3D laser scanning and magnetic resonance imaging were employed to acquire the external geometrical information prior to fabrication of a 3D printed meniscus. Bioink suitability was investigated through regional meniscal cell encapsulation in blended hydrogels, with the incorporation of growth factors and assessed for their suitability through rheology, scanning electron microscopy, histology and gene expression analysis. Meniscal tissue characterisation revealed regional variations in matrix compositions, cellular populations and protein expression. The process of imaging through to 3D printing highlighted the capability of producing a construct that accurately replicated meniscal geometries. Regional meniscal cell encapsulation into hydrogels revealed a recovery in cell phenotype, with the incorporation of growth factors into the bioink's stimulating cellular re-differentiation and improved zonal functionality. Meniscus biofabrication highlights the potential to print patient specific, customisable meniscal implants. Achieving zonally distinct variations in cell and matrix deposition highlights the ability to fabricate a highly complex tissue engineered construct.
To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models. A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways). Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies. Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients). 3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa.
BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation. For any figures and tables, please contact the authors directly.
Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis, mineralisation and angiogenesis. Importantly, how cartilage mineralisation affects angiogenesis during EO is not fully understood. Here we aimed to develop a new in vitro co-culture model to recapitulate and study the interaction between mineralised cartilage generated from human mesenchymal stromal cells (hMSCs) and microvascular networks. Chondrogenic hMSC pellets were generated by culture with transforming growth factor (TGF)-β3. For mineralised pellets, β-glycerophosphate (BGP) was added from day 7 and TGF-β3 was withdrawn on day 14. Conditioned medium (CM) from the pellets was used to evaluate the effect on human umbilical vein endothelial cells (HUVECs) in migration, proliferation and tube formation assays. To perform direct co-cultures, pellets were embedded in fibrin hydrogels containing vessel-forming cells (HUVECs, adipose stromal cells) for 10 days with BGP to induce mineralisation. The pellets and hydrogels were characterised by immunohistochemistry and confocal imaging.Introduction
Method
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group. Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.
Nasal Chondrocytes are safe and feasible for tissue engineering approaches in articular cartilage repair. As compared to articular chondrocytes (AC), nasal septum chondrocytes (NC) proliferate faster and have a higher and more reproducible capacity to generate hyaline-like cartilaginous tissues. Moreover, the use of NC would allow reducing the morbidity associated with the harvesting of cartilage biopsy from the patient. The objective of the present study was to demonstrate safety and feasibility in the use of tissue engineered cartilage graft based on autologous nasal chondrocytes for the repair of articular defect in goats.Summary
Introduction
Bioreactors have been used in articular cartilage tissue engineering (AC-TE) to apply different mechanical stimuli in an attempt to better mimic the native AC microenvironment. However, these systems are often highly complex, costly and not very versatile. In this work, we propose a simple and customizable perfusion bioreactor fabricated by 3D-extrusion to study the effect of shear stress in human bone-marrow mesenchymal stem cells (hBMSC) cultured in 3D porous polycaprolactone (PCL) scaffolds. Prototype models were designed in a CAD-software to perfectly fit the scaffolds and computational fluid dynamics analysis was used to predict the fluid velocities and shear stress forces inside the bioreactor. For the culture studies, hBMSC-PCL constructs were cultured under static expansion for 2 weeks and then transferred to the ABS-extruded bioreactors for continuous perfusion culture (0.2mL/min) under chondrogenic induction for additional 3 weeks. Perfused constructs showed similar cell proliferation and higher sGAG production in comparison to the static counterparts (bioreactor without perfusion). Constructs exposed to shear stress stimuli presented higher expressions of chondrogenic genes (
We have evaluated The results showed that the degree of bone formation was dependent on the properties of the graft material. The osteoconductive sintered matrix structure showed significant formation of bone at the implant-bone interface. The addition of autogenous marrow increased the penetration of new bone further into the central area of the matrix and also increased the degree of revascularisation. The osteoinductive growth factor BMP-7 induced penetration of new bone throughout the entire structure of the implant. The most effective treatment was with the combination of marrow cells and osteoinductive BMP-7.
Abstract. The lateral ligaments of the ankle composed of the anterior talofibular (ATFL), calcaneofibular (CFL) and posterior talofibular ligaments (PTFL), are amongst the most commonly injured ligaments of the human body. Although treatment methods have been explored exhaustively, healing outcomes remain poor with high rates of re-injury, chronic ankle instability and pain persisting. The introduction and application of tissue engineering methods may target poor healing outcomes and eliminate long-term complications, improving the overall quality of life of affected individuals. For any surgical procedure or
It is well known that environmental cues such as mechanical loading and/or cell culture medium composition affect
Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction,
Successful anterior cruciate ligament (ACL) reconstructions strive a firm ligament-bone integration. Therefore, the aim of this study was to address in more detail the enthesis as the thriphasic bone attachment of the ACL using a tissue engineering approach. To establish a
The growing number of non-union fractures in an aging population has increased the clinical demand for
Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results. This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion. This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based,
Design criteria for
Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop
Background. Skeletal stem cells can be combined with human allograft, and impacted to produce a mechanically stable living bone composite. This strategy has been used for the treatment of femoral head avascular necrosis, and has been translated to four patients, of which three remain asymptomatic at up to three year follow-up. In one patient collapse occurred in both hips due to widely distributed and advanced AVN disease, necessitating bilateral hip arthroplasty. However this has provided the opportunity to retrieve the femoral heads and analyse human tissue engineered bone. Aims. Analysis of retrieved human