Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force
The anatomy of the femur shows a high inter-patient variability, making it challenging to design standard prosthetic devices that perfectly adapt to the geometry of each individual. Over the past decade, Statistical Shape Models (SSMs) have been largely used as a tool to represent an average shape of many three-dimensional objects, as well as their variation in shape. However, no studies of the morphology of the residual femoral canal in patients who have undergone an amputation have been performed. The aim of this study was therefore to evaluate the main modes of variation in the shape of the canal, therefore simulating and analysing different levels of osteotomy. To assess the variability of the femoral canal, 72 CT-scans of the lower limb were selected. A segmentation was performed to isolate the region of interest (ROI), ranging from the lesser tip of the trochanter to the 75% of the length of the femur. The canals were then sized to scale, aligned, and 16 osteotomy levels were simulated, starting from a section corresponding to 25% of the ROI and up to the distal section. For each level, the main modes of variations of the femoral canal were identified through Principal Component Analysis (PCA), thus generating the mean geometry and the extreme shapes (±2 stdev) of the principal modes of variation. The shape of the canals obtained from these geometries was reconstructed every 10 mm, best- fitted with an ellipse and the following parameters were evaluated: i) ellipticity, by looking at the difference between axismax and axismin; ii) curvature of the canal, calculating the arc of circumference passing through the shapes’ centroids; iii) conicity, by looking at the maximum/minimum diameter; iv) mean diameter. To understand the association between the main modes and the shape
Abstract. OBJECTIVES. Dual mobility (DM) total hip replacements (THRs) were introduced to reduce the risk of hip dislocation in at-risk patients. DM THRs have shown good overall survivorship and low rates of dislocation, however, the mechanisms which describe how these bearings function in-vivo are not fully understood. This is partly due to a lack of suitable characterisation methodologies which are appropriate for the novel geometry and function of DM polyethylene liners, whereby both surfaces are subject to articulation. This study aimed to develop a novel semi-quantitative geometric characterisation methodology to assess the wear/deformation of DM liners. METHODS. Three-dimensional coordinate data of the internal and external surfaces of 14 in-vitro tested DM liners was collected using a Legex 322 coordinate measuring machine. Data was input into a custom Matlab script, whereby the unworn reference geometry was determined using a sphere fitting algorithm. The analysis method determined the geometric
Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest
Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume. The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth. Method. Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training. The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher. Result. During training, the validation accuracy improved and stabilised at approx. 95%. The test accuracy was 96.1 %. Conclusion. Most experiments using ectopic bone formation will yield an inter-observer or inter-method
This study compared the pullout forces of the initial implantation and the “cement-in-cement” revision technique for short and standard-length (125 mm vs. 150 mm) Exeter. ®. V40 femoral stems used in total hip arthroplasty (THA). The idea that the pullout force for a double taper slip stem is relative to the force applied to the femur and that “cement-in-cement” revision provides the same reproduction of force. A total sample size of 15 femoral stems were tested (Short, n = 6 and Standard, n = 9). 3D printed fixtures for repeatable sample preparation were used to minimize
Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality. This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m. 2. (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the
Tibial shaft fractures require surgical stabilization preferably by intramedullary nailing. However, patients often report functional limitations even years after the injury. This study investigates the influence of the surgical approach (transpatellar vs. parapatellar) on gait performance and patient reported outcome six months after surgery. Twenty-two patients with tibial shaft fractures treated by intramedullary nailing through a transpatellar approach (TP: n=15, age 41±15, BMI 24±3) or a parapatellar approach (PP: n=7, age 34±15, BMI 23±2) and healthy, matched controls (n=22, age 39±13, BMI 24±2) were assessed by instrumented motion analysis six months after intramedullary nailing. Short musculoskeletal function assessment questionnaire (SMFA) as well as kinematic and kinetic gait data were collected during level walking. Comparisons among approach methods and control group were performed by analysis of
Osteoarthritis (OA) is a common cause of chronic pain. Subchondral bone is highly innervated, and bone structural changes directly correlate with pain in OA. Mechanisms underlying skeletal–neural interactions are under-investigated. Bone derived axon guidance molecules are known to regulate bone remodelling. Such signals in the nervous system regulate neural plasticity, branching and neural inflammation. Perturbation of these signals during OA disease progression may disrupt sensory afferents activity, affecting tissue integrity, nociception, and proprioception. Osteocyte mechanical loading and IL-6 stimulation alters axon guidance signalling influencing innervation, proprioception, and nociception. Human Y201 MSC cells, embedded in 3D type I collagen gels (0.05 × 106 cell/gel) in 48 well plastic or silicone (load) plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) with soluble IL-6 receptor (sIL-6r (40ng/ml) or unstimulated (n=5/group), or mechanically loaded (5000 μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). RNA extracted 1hr and 24hrs post load was quantified by RNAseq whole transcriptome analysis (NovaSeq S1 flow cell 2 × 100bp PE reads and differentially expressed neurotransmitters identified (>2-fold change in DEseq2 analysis on normalised count data with FDR p<0.05). After 24 hours, extracted IL-6 stimulated RNA was quantified by RT-qPCR for neurotrophic factors using 2–∆∆Ct method (efficiency=94-106%) normalised to reference gene GAPDH (stability = 1.12 REfinder). Normally distributed data with homogenous
Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the
Abstract. Objectives. Ultrasound speckle tracking is a safe and non-invasive diagnostic tool to measure soft tissue deformation and strain. In orthopaedics, it could have broad application to measure how injury or surgery affects muscle, tendon or ligament biomechanics. However, its application requires custom tuning of the speckle-tracking algorithm then validation against gold-standard reference data. Implementing an experiment to acquire these data takes months and is expensive, and therefore prohibits use for new applications. Here, we present an alternative optimisation approach that automatically finds suitable machine and algorithmic settings without requiring gold-standard reference data. Methods. The optimisation routine consisted of two steps. First, convergence of the displacement field was tested to exclude the settings that would not track the underlying tissue motion (e.g. frame rates that were too low). Second, repeatability was maximised through a surrogate optimisation scheme. All settings that could influence the strain calculation were included, ranging from acquisition settings to post-processing smoothing and filtering settings, totalling >1,000,000 combinations of settings. The optimisation criterion minimised the normalised standard deviation between strain maps of repeat measures. The optimisation approach was validated for the medial collateral ligament (MCL) with quasi-static testing on porcine joints (n=3), and dynamic testing on a cadaveric human knee (n=1, female, aged 49). Porcine joints were fully dissected except for the MCL and loaded in a material-testing machine (0 to 3% strain at 0.2 Hz), which was captured using both ultrasound (>14 repeats per specimen) and optical digital image correlation (DIC). For the human cadaveric knee (undissected), 3 repeat ultrasound acquisitions were taken at 18 different anterior/posterior positions over the MCL while the knee was extended/flexed between 0° and 90° in a knee extension rig. Simultaneous optical tracking recorded the position of the ultrasound transducer, knee kinematics and the MCL attachments (which were digitised under direct visualisation post testing). Half of the data collected was used for optimisation of the speckle tracking algorithms for the porcine and human MCLs separately, with the remaining unseen data used as a validation test set. Results. For the porcine MCLs, ultrasound strains closely matched DIC strains (R. 2. > 0.98, RMSE < 0.59%) (Figure 1A). For the human MCL (Figure 1B), ultrasound strains matched the strains estimated from the optically tracked displacements of the MCL attachments. Furthermore, strains developed during flexion were highly correlated with AP position (R = 0.94) with strains decreasing the further posterior the transducer was on the ligament. This is in line with previously reported length change values for the posterior, intermediate and anterior bundles of the MCL. Conclusions. Ultrasound speckle tracking algorithms can be adapted for new applications without ground-truth data by using an optimisation approach that verifies displacement field convergence then minimises
Abstract. Objective. This study assesses the prevalence of major and minor discordance between hip and spine T scores using Radiofrequency Echographic Multi-spectrometry (REMS). REMS is a novel technology that uses ultrasound and radiofrequency analysis to measure bone density and bone fragility at the hip and lumbar spine. The objective was to compare the results with the existing literature on Dual-Energy X-ray Absorptiometry (DEXA) the current “gold standard” for bone densitometry. REMS and DEXA have been shown to have similar diagnostic accuracy, however, REMS has less human input when carrying out the scan, therefore the rates of discordance might be expected to be lower than for DEXA. Discordance poses a risk of misclassification of patients’ bone health status, causing diagnostic ambiguity and potentially sub-optimal management decisions. Reduction of discordance rates therefore has the potential to significantly improve treatment and patient outcomes. Methods. Results from 1,855 patients who underwent REMS investigations between 2018 and 2022 were available. Minor discordance is defined as a difference of one World Health Organisation (WHO) diagnostic classification (Normal / Osteopenia or Osteopenia / Osteoporosis). Major discordance is defined as a difference of two WHO diagnostic classifications (Normal / Osteoporosis). The results were compared with reported DEXA discordance rates. Results. 1,732 individuals had both hip and spine T scores available for analysis. There were 267 cases of discordance. No instances of major discordance were observed. The minor discordance rate was 15.4%. 6.5% of the REMS scans with minor discordance showed > 1.0 standard deviation (SD) difference between the T scores of the hip and spine. 19.4% had differences of between 0.6 SD and 1.0 SD while 73.9% had ≤ 0.5 SD or less. In 24.5% of the cases of REMS discordance the hip T scores were greater than the spine and in 75.5% of cases the spine T score was greater than the hip. Conclusions. The current analysis is the largest of its kind. It demonstrates that REMS has an overall lower rate of discordance than reported DEXA rates. Major discordance rates with DEXA range from 2–17%, but REMS avoids many of the positioning problems and post-processing errors inherent in DEXA scanning, which might account for the absence of major discordance. Rates of minor discordance in DEXA scans range between 38–51%. The REMS minor discordance rate being much lower than these rates suggests that it has the potential to enhance diagnostic accuracy considerably. Most REMS discordance results showed ≤ 0.5 SD
Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA mechanical loading. 5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients. 6. HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS. Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous
Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results. For the whole sample, BUA predicted 29% of the study population
Abstract. Objectives. The objective of this proof of concept study was to explore whether some total hip arthroplasty (THA) patients with well-functioning implants achieve normal sagittal plane hip kinematics during walking gait. Methods. Sagittal plane hip kinematics were recorded in eleven people with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) using a three-dimensional motion capture system as they walked over-ground at a self-selected velocity. THA patients were classified as high- or low-functioning (HF and LF, respectively) depending on whether the mean absolute difference between their sagittal plane hip kinematics was within one standard deviation of the control group (5.4°) or not. Hedge's g effect size was used to compare the magnitude of the difference from the control group for the HF and LF THA groups. Results. Five THA patients were identified as HF and 6 as LF. The mean absolute difference in sagittal plane hip kinematics between the THA groups and the control group was on average 6.2° larger for the LF THA patients compared to the HF, with this difference associated with a large effect size (g = 1.84). Conclusions. The findings of this study challenge the findings of previous work which suggests THA patients do not achieve normal sagittal plane hip kinematics. Five patients were classified as HR and achieved motion patterns that were on average within the
Introduction and Objective. Digital infra-red thermography may have the capability of identifying local inflammations. Nevertheless, the role of thermography in diagnosing pin site infection has not been explored yet and the reliability and validity of this method for pin site surveillance is in question. The purpose of this study was to explore the capability and intra-rater reliability of thermography in detecting pin site infection. Materials and Methods. This explorative proof of concept study follows GRRAS -guidelines for reporting reliability and agreement studies. After clinical assessment of pin sites by one examiner using Modified Gordon Pin Infection Classification (Grade 0 – 6), thermographic images of the pin sites were captured with a FLIR C3 camera and analyzed by the FLIR tools software package. The maximum skin temperature around the pin site and the maximum temperature for the whole thermographic picture was measured. Intra-rater agreement was established and test-retests were performed with different camera angles. Results. Thirteen (4 females) patients (age 9–72 years) were included. Indications for frames: 4 fracture, 2 deformity correction, 1 lengthening, 6 bone transport. Days from surgery to thermography ranged from 27 to 385 days. Overall, 231 pin sites were included. Eleven pin sites were diagnosed with early signs of infection: five grade 1, five grade 2, one grade 3. Mean pin site temperature was 33.9 °C (29.0–35.4). With 34 °C as cut-off value for infection, sensitivity was 73%, specificity 67%, positive predictive value 10% and negative predictive value 98%. Intra-rater reliability for thermography was ICC 0.85 (0.77–0.92). The temperature measured was influenced by the camera postioning in relation to pin site with a
Introduction and Objective. Slipped Capital Femoral Epiphysis (SCFE) is one of the most common hip disorders in children and is characterized by a proximal femoral deformity, resulting in early osteoarthritis. Several studies have suggested that SCFE patients after in situ fixation show an altered gait pattern. Early identification of gait alterations might lead to earlier intervention programs to prevent osteoarthritis. The aim of this study is to analyse gait alterations in SCFE patients after in situ fixation compared to typically developed children, using the Computer Assisted Rehabilitation Environment (CAREN) system. Materials and Methods. This is a cross-sectional, multi-center case-control study in the Netherlands. Eight SCFE patients and eight age- and sex-matched typically developed were included from two hospitals. Primary outcomes were kinematic parameters (absolute joint angles), studied with gait analysis using statistical parametric mapping (SPM). Secondary outcomes were spatiotemporal parameters, the Notzli alpha angle, muscle activation patterns (EMG), and clinical questionnaires (VAS, Borg CR10, SF-36, and HOOS), analyzed using non-parametric statistical methods. Results. Patients (mean BMI=28±9 kg/m. 2. ) showed altered gait patterns, with significantly increased external hip rotation and decreased downward pelvic obliquity during the pre-swing phase of the gait cycle compared to typically developed (mean BMI=22±3 kg/m. 2. ). Walking speed, cadence, % stance time, and step length were reduced in SCFE patients. Coefficient of
Introduction and Objective. Gait variability is the amplitude of the fluctuations in the time series with respect to the mean of kinematic (e.g., joint angles) or kinetic (e.g., joint moments) measurements. Although gait variability increases with normal ageing or pathological mechanisms, such as knee osteoarthritis (OA). The purpose was to determine if a patient who underwent a total knee arthroplasty (TKA) can reduce gait variability. Materials and Methods. Twenty-five patients awaiting TKA were randomly assigned to receive either medial pivot (MP, m=7/f=6, age=62.4±6.2 years) or posterior stabilized (PS, m=7/f=5, age=63.7±8.9 years) implants, and were compared to 13 controls (CTRL, m=7/f=6, age=63.9±4.3 years). All patients completed a gait analysis within one month prior and 12 months following surgery, CTRLs completed the protocol once. A waveform F-Test Method (WFM) was used to compare the
Introduction and Objective. Malunion after trauma can lead to coronal plane malalignment in the lower limb. The mechanical hypothesis suggests that this alters the load distribution in the knee joint and that that this increased load may predispose to compartmental arthritis. This is generally accepted in the orthopaedic community and serves as the basis guiding deformity correction after malunion as well as congenital or insidious onset malalignment. Much of the literature surrounding the contribution of lower limb alignment to arthritis comes from cohort studies of incident osteoarthritis. There has been a causation dilemma perpetuated in a number of studies - suggesting malalignment does not contribute to, but is instead a consequence of, compartmental arthritis. In this investigation the relationship between compartmental (medial or lateral) arthritis and coronal plane malalignment (varus or valgus) in patients with post traumatic unilateral limb deformity was examined. This represents a specific niche cohort of patients in which worsened compartmental knee arthritis after extra-articular injury must rationally be attributed to malalignment. Materials and Methods. The picture archiving system was searched to identify all 1160 long leg x ray films available at a major metropolitan trauma center over a 12-year period. Images were screened for inclusion and exclusion criteria, namely patients >10 years after traumatic long bone fracture without contralateral injury or arthroplasty to give 39 cases. Alignment was measured according to established surgical standards on long leg films by 3 independent reviewers, and arthritis scores Osteoarthritis Research Society International (OARSI) and Kellegren-Lawrence (KL) were recorded independently for each compartment of both knees. Malalignment was defined conservatively as mechanical axis deviation outside of 0–20 mm medial from centre of the knee, to give 27 patients. Comparison of mean compartmental arthritis score was performed for patients with varus and valgus malalignment, using Analysis of
Inter-subject variability is inherently present in patient anatomy and is apparent in differences in shape, size and relative alignment of the bony structures. Understanding the variability in patient anatomy is useful for distinguishing between pathologies and to assist in surgical planning. With the aim of supporting the development of stratified orthopaedic interventions, this work introduces an Articulated Statistical Shape Model (ASSM) of the lower limb. The model captures inter-subject variability and allows reconstructing ‘virtual’ knee joints of the lower limb shape while considering pose. A training dataset consisting of 173 lower limbs from CT scans of 110 subjects (77 male, 33 female) was used to construct the ASSM of the lower limb. Each bone of the lower limb was segmented using ScanIP (Simpleware Ltd., UK), reconstructed into 3D surface meshes, and a SSM of each bone was created. A series of sizing and positioning procedures were carried out to ensure all the lower limbs were in full extension, had the same femoral length and that the femora were aligned with a coincident centre. All articulated lower limbs were represented as: (femur scale factor) × (full extension articulated lower limb + relative transformation of tibia, fibula and patella to femur). Articulated lower limbs were in full extension were used to construct a statistical shape model, representing the