Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 59 - 59
1 Dec 2017
Frapwell C Duignan C Webb J Aiken S Cooper J Stoodley P Howlin R
Full Access

Aim

Bacterial biofilms play a key role in prosthetic infection (PI) pathogenesis. Establishment of the biofilm phenotype confers the bacteria with significant tolerance to systemic antibiotics and the host immune system meaning thorough debridement and prosthesis removal often remain the only possible course of treatment. Protection of the prosthesis and dead-space management may be achieved through the use of antibiotic loaded cements and beads to release high concentrations of antibiotics at the surgical site. The antibacterial and antibiofilm efficacy of these materials is poorly understood in the context of mixed species models, such as are often encountered clinically.

Methods

A P. aeruginosa and S. aureus in vitro co-culture biofilm model was grown using 1/5th BHI supplemented with 20 µM hemin. The ability of beads made from a synthetic calcium sulfate (CaSO4) loaded with vancomycin, tobramycin and vancomycin & tobramycin in combination to prevent biofilm formation and kill established co-culture biofilms were assessed using viable cell counts and confocal scanning laser microscopy (CSLM) over a 7 day time course. To assay for genetic changes to the individual species as a result of their presence together within a biofilm, mutation rates were measured using fluctuation analysis following growth as planktonic and biofilm cultures, alone or in co-culture. Mutants were determined based on their ability to grow on agar plates containing an inhibitory concentration of rifampicin. Mutation rates were calculated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator and 94% confidence intervals compared for significance.