Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 14 - 14
1 Mar 2021
Tsang J Gallagher M Simpson H
Full Access

Abstract

OBJECTIVES

Staphylococcus aureus is one of the most common pathogens in orthopaedic biomaterial-associated infections. The transition of planktonic S. aureus to its biofilm phenotype is critical in the pathogenesis of biomaterial-associated infections and the development of antimicrobial tolerance, which leads to ineffective eradication in clinical practice. This study sought to elucidate the effect of non-lethal dispersion on antimicrobial tolerance in S. aureus biofilms.

METHODS

Using a methicillin-sensitive S. aureus reference strain, the effect of non-lethal dispersion on gentamicin tolerance, cellular activity, and the intracellular metabolome of biofilm-associated bacteria were examined. Gentamicin tolerance was estimated using the dissolvable bead biofilm assay. Cellular activity was estimated using the triphenyltetrazolium chloride assay. Metabolome analysis was performed using tandem high-performance liquid chromatography and mass spectrometry.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 43 - 43
1 Jan 2019
Tsang J Gwynne P Gallagher M Simpson H
Full Access

Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, costing the NHS £120–200 million per annum. Its ability to develop tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explores, but preliminary work has shown potential benefit, especially when combined with existing antibiotics.

Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, bacterial biofilms were challenged by gentamicin +/− low-intensity ultrasound (1.5MHz, 30W/cm2, pulse duration 200µs/1KHz) for 20 minutes. The outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin.

The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was 64mg/L.

Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin; bringing the MBEC of gentamicin to within clinically achievable concentrations