Problematic bone defects are encountered regularly in orthopaedic practice particularly in fracture non-union, revision hip and knee arthroplasty, following bone tumour excision and in spinal fusion surgery. At present the optimal source of graft to ‘fill’ these defects is autologous bone but this has significant drawbacks including harvest site morbidity and limited quantities. Bone marrow has been proposed as the main source of osteogenic stem cells for the tissue-engineered cell therapy approach to bone defect management. Such cells constitute a minute proportion of the total marrow cell population and their isolation and expansion is a time consuming and expensive strategy. In this study we investigated human bone marrow stem cells as a potential treatment of bone defect by looking at variability in patient osteogenic cell populations as a function of patient differences. We produced a model to predict which patients would be more suited to cell based therapies and propose possible methods for improving the quality of grafts. Bone marrow was harvested from 30 patients undergoing elective total hip replacement surgery in Musgrave Park Hospital, Belfast (12 males, 18 females, age range 52-82 years). The osteogenic stem cell fraction was cultured and subsequently analysed using colony forming efficiency assays, flow cytometry, fluorescence activated cell sorting and proteomics.Introduction
Methods
We hypothesised that in response to fracture, some integral osteoblasts are recruited via the circulation from remote bone marrow sites.
All animals had bone marrow harvested from their right tibia by saline flush. The mononuclear cells were isolated and culture-expanded in osteogenic medium for 3 weeks. Fluorescent reporter molecules were incorporated into the cell membranes, 24 hours prior to re-implantation of the cells into the fracture model. A 3 mm ulnar defect was preformed in all the animals. In groups I–III this was established 48 hours prior to cell re-implantation. The animals were sacrificed at least 3 weeks after fracture surgery. Representative samples of the fracture callous, lung, liver, spleen and kidney were harvested from all animals and cryo-sectioned. Using confocal microscopy, the labelled cells were expressed as the average in 5 high power fields for each solid tissue. In addition, cyto-spins were made from blood and marrow and the cell number expressed as a percentage of the total cells.
In all sections, these labelled cells appeared on trabecular surfaces in an osteoblastic fashion, but occasionally they were surrounded by osteoid, corresponding to osteocytes. A small number of labelled cells were found in the blood, bone marrow, lung, liver and spleen of all animals in groups I–III. No labelled cells were identified in the kidney tissue.