Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims. Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. Methods. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests. Results. A total of 130 studies using 15 distinct objective functional assessment methods (FAMs) were identified. The most frequently used method was instrumented gait/motion analysis, followed by the Timed-Up-and-Go test (TUG), 6 minute walk test, timed stair climbing test, and various strength tests. These assessments were characterized by their diagnostic precision and applicability to daily activities. Wearables were frequently used, offering cost-effectiveness and remote monitoring benefits. However, their accuracy and potential discomfort for patients must be considered. Conclusion. The integration of objective functional assessments in THA presents promise as a progress-tracking modality for improving patient outcomes. Gait analysis and the TUG, along with advancing wearable sensor technology, have the potential to enhance patient care, surgical planning, and rehabilitation. Cite this article: Bone Joint J 2024;106-B(8):764–774


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1479 - 1488
1 Dec 2019
Laverdière C Corban J Khoury J Ge SM Schupbach J Harvey EJ Reindl R Martineau PA

Aims. Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics. Materials and Methods. A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers. Results. A total of 41 publications were included after screening. Applications were divided by subspecialty: spine (n = 15), trauma (n = 16), arthroplasty (n = 3), oncology (n = 3), and sports (n = 4). Out of these, 12 were clinical in nature. AR-based technologies have a wide variety of applications, including direct visualization of radiological images by overlaying them on the patient and intraoperative guidance using preoperative plans projected onto real anatomy, enabling hands-free real-time access to operating room resources, and promoting telemedicine and education. Conclusion. There is an increasing interest in AR among orthopaedic surgeons. Although studies show similar or better outcomes with AR compared with traditional techniques, many challenges need to be addressed before this technology is ready for widespread use. Cite this article: Bone Joint J 2019;101-B:1479–1488


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article: Bone Joint J 2020;102-B(4):407–413


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.

Cite this article: Bone Joint J 2022;104-B(12):1292–1303.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 857 - 863
1 Aug 2023
Morgan C Li L Kasetti PR Varma R Liddle AD

Aims

As an increasing number of female surgeons are choosing orthopaedics, it is important to recognize the impact of pregnancy within this cohort. The aim of this review was to examine common themes and data surrounding pregnancy, parenthood, and fertility within orthopaedics.

Methods

A systematic review was conducted by searching Medline, Emcare, Embase, PsycINFO, OrthoSearch, and the Cochrane Library in November 2022. The Preferred Reporting Items for Systematic Reviews and Meta Analysis were adhered to. Original research papers that focused on pregnancy and/or parenthood within orthopaedic surgery were included for review.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 541 - 548
1 May 2022
Zhang J Ng N Scott CEH Blyth MJG Haddad FS Macpherson GJ Patton JT Clement ND

Aims

This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA).

Methods

Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-­Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1449 - 1456
1 Sep 2021
Kazarian GS Lieberman EG Hansen EJ Nunley RM Barrack RL

Aims

The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA).

Methods

A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1009 - 1020
1 Jun 2021
Ng N Gaston P Simpson PM Macpherson GJ Patton JT Clement ND

Aims

The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA).

Methods

Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1416 - 1423
1 Nov 2018
Rajan PV Qudsi RA Dyer GSM Losina E

Aims

The aim of this study was to assess the quality and scope of the current cost-effectiveness analysis (CEA) literature in the field of hand and upper limb orthopaedic surgery.

Materials and Methods

We conducted a systematic review of MEDLINE and the CEA Registry to identify CEAs that were conducted on or after 1 January 1997, that studied a procedure pertaining to the field of hand and upper extremity surgery, that were clinical studies, and that reported outcomes in terms of quality-adjusted life-years. We identified a total of 33 studies that met our inclusion criteria. The quality of these studies was assessed using the Quality of Health Economic Analysis (QHES) scale.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims

The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR.

Materials and Methods

In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies).