Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 830 - 834
1 Jun 2009
Pinskerova V Samuelson KM Stammers J Maruthainar K Sosna A Freeman MAR

There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 730 - 735
1 May 2005
Sharpe JR Ahmed SU Fleetcroft JP Martin R

In this study a combination of autologous chondrocyte implantation (ACI) and the osteochondral autograft transfer system (OATS) was used and evaluated as a treatment option for the repair of large areas of degenerative articular cartilage. We present the results at three years post-operatively. Osteochondral cores were used to restore the contour of articular cartilage in 13 patients with large lesions of the lateral femoral condyle (n = 5), medial femoral condyle (n = 7) and patella (n = 1). Autologous cultured chondrocytes were injected underneath a periosteal patch covering the cores. After one year, the patients had a significant improvement in their symptoms and after three years this level of improvement was maintained in ten of the 13 patients. Arthroscopic examination revealed that the osteochondral cores became well integrated with the surrounding cartilage. We conclude that the hybrid ACI/OATS technique provides a promising surgical approach for the treatment of patients with large degenerative osteochondral defects


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1189 - 1195
1 Nov 2000
Iwaki H Pinskerova V Freeman MAR

In six unloaded cadaver knees we used MRI to determine the shapes of the articular surfaces and their relative movements. These were confirmed by dissection. Medially, the femoral condyle in sagittal section is composed of the arcs of two circles and that of the tibia of two angled flats. The anterior facets articulate in extension. At about 20° the femur ‘rocks’ to articulate through the posterior facets. The medial femoral condyle does not move anteroposteriorly with flexion to 110°. Laterally, the femoral condyle is composed entirely, or almost entirely, of a single circular facet similar in radius and arc to the posterior medial facet. The tibia is roughly flat. The femur tends to roll backwards with flexion. The combination during flexion of no antero-posterior movement medially (i.e., sliding) and backward rolling (combined with sliding) laterally equates to internal rotation of the tibia around a medial axis with flexion. About 5° of this rotation may be obligatory from 0° to 10° flexion; thereafter little rotation occurs to at least 45°. Total rotation at 110° is about 20°, most if not all of which can be suppressed by applying external rotation to the tibia at 90°


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1460 - 1465
1 Oct 2010
Rauh PB Clancy WG Jasper LE Curl LA Belkoff S Moorman CT

We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method. Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1199 - 1200
1 Nov 2000
Nakagawa S Kadoya Y Todo S Kobayashi A Sakamoto H Freeman MAR Yamano Y

We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by internal rotation of the tibia. At 162° the lateral femoral condyle lies posterior to the tibia


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 428 - 436
1 Apr 2001
Lovász G Park SH Ebramzadeh E Benya PD Llinás A Bellyei Á Luck JV Sarmiento A

To investigate the effect of instability on the remodelling of a minor articular surface offset, we created a 0.5 mm coronal step-off of the medial femoral condyle in 12 New Zealand white rabbits and transected the anterior cruciate ligament (ACL). A control group of 12 rabbits had only ACL resection and the opposite knee was used as the non-operated control. The osteoarthritic changes at 6, 12 and 24 weeks after surgery were evaluated histologically. In addition, changes in the immunological detection of 3-B-3(-) and 7-D-4 chondroitin-6-sulphate epitopes were determined because of the previous association of such changes with repair of cartilage and early osteoarthritis. In the instability/step-off group there was rapidly progressing focal degeneration of cartilage on the high side of the defect, not seen in previous step-off studies in stable knees. The rest of the femoral condyles and the tibial plateaux of the instability/step-off group had moderate osteoarthritis similar to that of the instability group. 3-B-3(-) was detectable in the early and the intermediate stages of osteoarthritis but no staining was seen in the severely damaged cartilage zones. Immunoreactivity with 7-D-4 increased as degeneration progressed. Our findings have shown that even a minor surface offset may induce rapid degeneration of cartilage when the stability of the knee is compromised


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 421 - 426
1 Mar 2011
Maličev E Barlič A Kregar-Velikonja N Stražar K Drobnič M

The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg vs 341 cells/mg), but similar cell proliferation, viability and morphology compared with the cells from the edge of the lesion. The cartilage differentiation indices were superior in control cells: COL2/COL1 (threefold in biopsies (non-significant)); sixfold in monolayer cultures (p = 0.012), and 7.5-fold in hydrogels (non-significant), AGR/VER (sevenfold in biopsies (p = 0.04), threefold (p = 0.003) in primary cultures and 3.5-fold in hydrogels (non-significant)). Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 925 - 931
1 Aug 2004
Pinskerova V Johal P Nakagawa S Sosna A Williams A Gedroyc W Freeman MAR

MRI studies of the knee were performed at intervals between full extension and 120° of flexion in six cadavers and also non-weight-bearing and weight-bearing in five volunteers. At each interval sagittal images were obtained through both compartments on which the position of the femoral condyle, identified by the centre of its posterior circular surface which is termed the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP), were identified relative to the posterior tibial cortex. The movements of the CP and FFC were essentially the same in the three groups but in all three the medial differed from the lateral compartment and the movement of the FFC differed from that of the CP. Medially from 30° to 120° the FFC and CP coincided and did not move anteroposteriorly. From 30° to 0° the anteroposterior position of the FFC remained unchanged but the CP moved forwards by about 15 mm. Laterally, the FFC and the CP moved backwards together by about 15 mm from 20° to 120°. From 20° to full extension both the FFC and CP moved forwards, but the latter moved more than the former. The differences between the movements of the FFC and the CP could be explained by the sagittal shapes of the bones, especially anteriorly. The term ‘roll-back’ can be applied to solid bodies, e.g. the condyles, but not to areas. The lateral femoral condyle does roll-back with flexion but the medial does not, i.e. the femur rotates externally around a medial centre. By contrast, both the medial and lateral contact points move back, roughly in parallel, from 0° to 120° but they cannot ‘roll’. Femoral roll-back with flexion, usually imagined as backward rolling of both condyles, does not occur


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1635 - 1640
1 Dec 2008
Spence G Phillips S Campion C Brooks R Rushton N

Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1285 - 1291
1 Sep 2005
Whiteside RA Jakob RP Wyss UP Mainil-Varlet P

Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes. Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1003 - 1007
1 Nov 1997
Oka M Chang Y Nakamura T Ushio K Toguchida J Gu H

We have studied damage to the tibial articular surface after replacement of the femoral surface in dogs. We inserted pairs of implants made of alumina, titanium and polyvinyl alcohol (PVA) hydrogel on titanium fibre mesh into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. We discuss the clinical implications of the possible use of this material in articular resurfacing and joint replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 276 - 282
1 Mar 2000
Sabo D Brocai DRC Eble M Wannenmacher M Ewerbeck V

We studied the effects of irradiation on the reintegration of autologous osteoarticular grafts over a period of 24 weeks in a canine model. In 16 foxhounds the medial femoral condyle was resected, irradiated and immediately replanted. In the control group resection and replantation were performed without irradiation. Reintegration was assessed by macroscopic analysis, histology, radiography and gait analysis. Reintegration was equal at 12 weeks, but significantly inferior in the irradiated group after 24 weeks with delayed bone remodelling. The articular cartilage showed modest degeneration. Conventional radiography and histology showed corresponding changes. Limb function was adequate but the gait was inferior in the treated group


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1196 - 1198
1 Nov 2000
Hill PF Vedi V Williams A Iwaki H Pinskerova V Freeman MAR

In 13 unloaded living knees we confirmed the findings previously obtained in the unloaded cadaver knee during flexion and external rotation/internal rotation using MRI. In seven loaded living knees with the subjects squatting, the relative tibiofemoral movements were similar to those in the unloaded knee except that the medial femoral condyle tended to move about 4 mm forwards with flexion. Four of the seven loaded knees were studied during flexion in external and internal rotation. As predicted, flexion (squatting) with the tibia in external rotation suppressed the internal rotation of the tibia which had been observed during unloaded flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 441 - 447
1 Apr 2001
Rahbek O Overgaard S Lind M Bendix K Bünger C Søballe K

We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 725 - 731
1 Jul 1999
Overgaard S Bromose U Lind M Bünger C Søballe K

We inserted two hydroxyapatite (HA)-coated implants with crystallinities of either 50% (HA-50%) or 75% (HA-75%) bilaterally into the medial femoral condyles of the knees of 16 dogs. The implants were allocated to two groups with implantation periods of 16 and 32 weeks. They were weight-bearing and subjected to controlled micromovement of 250 μm during each gait cycle. After 16 weeks, mechanical fixation of the HA-50% implants was increased threefold as compared with the HA-75% implants. After 32 weeks there was no difference between HA-50% and HA-75%. Fixation of HA-75% increased from 16 to 32 weeks whereas that of HA-50% was unchanged. HA-50% implants had 100% more bone ingrowth than HA-75% implants after 16 weeks. More HA coating was removed on HA-50% implants compared with HA-75% implants after both 16 and 32 weeks. No further loss of the HA coating was shown from 16 to 32 weeks. Our study suggests that the crystallinity of the HA coating is an important factor in its bioactivity and resorption during weight-bearing conditions. Our findings suggest two phases of coating resorption, an initial rapid loss, followed by a slow loss. Resorbed HA coating was partly replaced by bone ingrowth, suggesting that implant fixation will be durable


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 369 - 376
1 May 1996
Weiler A Helling H Kirch U Zirbes TK Rehm KE

Foreign-body reaction to polyglycolide (PGA) implants has been described in man. Many animal experiments have verified the mechanical properties of fixation devices made from PGA, but a significant foreign-body reaction has not been described. We studied the effect of PGA rods in 12 sheep with standardized osteochondral fractures of the medial femoral condyle fixed with uncoloured, self-reinforced PGA rods (Biofix). Radiographs were taken at intervals ranging from two weeks to two years, and the sheep were killed at intervals ranging from six to 24 months. All knees were examined histologically. Eleven of the 12 fractures healed radiologically and histologically. Moderate to severe osteolysis was seen at four to six weeks with maximum changes at 12 weeks in ten animals. Six knees showed fistula-like connections between the implant site and the joint space. Three developed synovitis, one with inflammatory changes involving the whole cartilage and one with destruction of the medial condyle. Although in our study osteochondral fractures fixed with PGA rods healed reliably, there were frequent, significant foreign-body reactions. Caution is needed when considering the use of PGA fixation devices in vulnerable regions such as the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 377 - 382
1 May 1996
Lind M Overgaard S Ongpipattanakul B Nguyen T Bünger C Søballe K

Bone growth into cementless prosthetic components is compromised by osteoporosis, by any gap between the implant and the bone, by micromotion, and after the revision of failed prostheses. Recombinant human transforming growth factor-β1 (rhTGF-β1) has recently been shown to be a potent stimulator of bone healing and bone formation in various models in vivo. We have investigated the potential of rhTGF-β1, adsorbed on to weight-loaded tricalcium phosphate (TCP) coated implants, to enhance bone ongrowth and mechanical fixation. We inserted cylindrical grit-blasted titanium alloy implants bilaterally into the weight-bearing part of the medial femoral condyles of ten skeletally mature dogs. The implants were mounted on special devices which ensured stable weight-loading during each gait cycle. All implants were initially surrounded by a 0.75 mm gap and were coated with TCP ceramic. Each animal received two implants, one with 0.3 μg rhTGF-β1 adsorbed on the ceramic surface and the other without growth factor. Histological analysis showed that bone ongrowth was significantly increased from 22 ± 5.6% bone-implant contact in the control group to 36 ± 2.9% in the rhTGF-β stimulated group, an increase of 59%. The volume of bone in the gap was increased by 16% in rhTGF-β1-stimulated TCP-coated implants, but this difference was not significant. Mechanical push-out tests showed no difference in fixation of the implant between the two groups. Our study suggests that rhTGF-β1 adsorbed on TCP-ceramic-coated implants can enhance bone ongrowth


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 823 - 829
1 Jun 2009
Adachi N Motoyama M Deie M Ishikawa M Arihiro K Ochi M

We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery.

The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p < 0.01). In the specimens at the second-look arthroscopy, the extracellular matrix was stained more densely than at the time of fixation, especially in the middle to deep layers of the articular cartilage.

Our findings show that articular cartilage regenerates after fixation of an unstable lesion in osteochondritis dissecans.