Advertisement for orthosearch.org.uk
Results 1 - 100 of 175
Results per page:
Bone & Joint Research
Vol. 11, Issue 8 | Pages 514 - 517
10 Aug 2022
Little CB Zaki S Blaker CL Clarke EC

Cite this article: Bone Joint Res 2022;11(8):514–517.


Bone & Joint Research
Vol. 3, Issue 4 | Pages 89 - 94
1 Apr 2014
Cook JL Hung CT Kuroki K Stoker AM Cook CR Pfeiffer FM Sherman SL Stannard JP

Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives. The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. Materials and Methods. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Results. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. Conclusion. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article: R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6–11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2


Bone & Joint Research
Vol. 5, Issue 9 | Pages 393 - 402
1 Sep 2016
Yang Z Liu H Li D Xie X Qin T Ma J Kang P

Objectives. The primary purpose of this meta-analysis was to determine whether statin usage could reduce the risk of glucocorticoid-related osteonecrosis in animal models. Methods. A systematic literature search up to May 2015 was carried out using the PubMed, Ovid, EBM reviews, ISI Web of Science, EBSCO, CBM, CNKI databases with the term and boolean operators: statins and osteonecrosis in all fields. Risk ratio (RR), as the risk estimate of specific outcome, was calculated along with 95% confidence intervals (CI). The methodological quality of individual studies was assessed using a quantitative tool based on the updated Stroke Therapy Academic Industry Roundtable (STAIR) recommendations. Results. A total of 11 eligible studies were included according to predetermined criteria. The pooled data demonstrated that animals with statin usage, either alone or combined with other treatments, were at a decreased risk of developing glucocorticoid-related osteonecrosis (RR = 2.06, 95% confidence interval (CI) 1.71 to 2.50). Moreover, subgroup analysis revealed that compared with statins alone, statins combined with other treatments significantly decreased the risk of osteonecrosis (RR = 1.23, 95% CI 1.02 to 1.47). However, we could find no significant risk difference for different gender, or for different time points. Conclusions. The present study suggests that statins combined with other treatments are efficient in preventing the development of glucocorticoid-related osteonecrosis in animals. These results might shed light on clinical practice when glucocorticoids are prescribed, and could be further investigated in high-quality clinical trials. Cite this article: Z. Yang, H. Liu, D. Li, X. Xie, T. Qin, J. Ma, P. Kang. The efficacy of statins in preventing glucocorticoid-related osteonecrosis in animal models: A meta-analysis. Bone Joint Res 2016;5:393–402. DOI: 10.1302/2046-3758.59.2000500


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives. We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection. Materials and Methods. Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn. Results. Loading alone caused a rise in subchondral IOP from 11.7 mmHg (. sd. 7.1) to 17.9 mmHg (. sd. 8.1; p < 0.0002). During arterial occlusion, IOP fell to 5.3 mmHg (. sd. 4.1), then with loading there was a small rise to 7.6 mmHg (. sd. 4.5; p < 0.002). During venous occlusion, IOP rose to 20.2 mmHg (. sd. 5.8), and with loading there was a further rise to 26.3 mmHg (. sd. 6.3; p < 0.003). The effects were present at three different sites along the limb simultaneously. Saline injections showed pressure transmitted throughout the length of the femur but not across the knee joint. Conclusion. This is the first study to report changes in IOP in vivo during loading and with combinations of vascular occlusion and loading. Intraosseous pressure is not a constant. It is reduced during proximal arterial occlusion and increased with proximal venous occlusion. Whatever the perfusion state, in vivo load is transferred partly by hydraulic pressure. We propose that joints act as hydraulic pressure barriers. An understanding of subchondral physiology may be important in understanding osteoarthritis and other bone diseases. Cite this article: M. Beverly, S. Mellon, J. A. Kennedy, D. W. Murray. Intraosseous pressure during loading and with vascular occlusion in an animal model. Bone Joint Res 2018;7:511–516. DOI: 10.1302/2046-3758.78.BJR-2017-0343.R2


Bone & Joint Research
Vol. 3, Issue 6 | Pages 203 - 211
1 Jun 2014
Onur T Wu R Metz L Dang A

Objectives. Our objective in this article is to test the hypothesis that type 2 diabetes mellitus (T2DM) is a factor in the onset and progression of osteoarthritis, and to characterise the quality of the articular cartilage in an appropriate rat model. Methods. T2DM rats were obtained from the UC Davis group and compared with control Lewis rats. The diabetic rats were sacrificed at ages from six to 12 months, while control rats were sacrificed at six months only. Osteoarthritis severity was determined via histology in four knee quadrants using the OARSI scoring guide. Immunohistochemical staining was also performed as a secondary form of osteoarthritic analysis. Results. T2DM rats had higher mean osteoarthritis scores than the control rats in each of the four areas that were analysed. However, only the results at the medial and lateral femur and medial tibia were significant. Cysts were also found in T2DM rats at the junction of the articular cartilage and subchondral bone. Immunohistochemical analysis does not show an increase in collagen II between control and T2DM rats. Mass comparisons also showed a significant relationship between mass and osteoarthritis score. Conclusions. T2DM was found to cause global degeneration in the UCD rat knee joints, suggesting that diabetes itself is a factor in the onset and progression of osteoarthritis. The immunohistochemistry stains showed little to no change in collagen II degeneration between T2DM and control rats. Overall, it seems that the animal model used is pertinent to future studies of T2DM in the development and progression of osteoarthritis. Cite this article: Bone Joint Res 2014;3:203–11


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims. Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Methods. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted. Results. A total of 43 studies were included. Animal models used included fracture-related infections (ten studies), periprosthetic joint infections (five studies), spinal infections (three studies), other implant-associated infections, and osteomyelitis. The most common bacteria were Staphylococcus species. Biofilm was most often observed with scanning electron microscopy. The natural history of biofilm revealed that the process of bacteria attachment, proliferation, maturation, and dispersal would take 14 days. For systemic mono-antibiotic therapy, only two of six studies using vancomycin reported significant biofilm reduction, and none reported eradication. Ten studies showed that combined systemic and topical antibiotics are needed to achieve higher biofilm reduction or eradication, and the effect is decreased with delayed treatment. Overall, 13 studies showed promising therapeutic potential with surface coating and antibiotic loading techniques. Conclusion. Combined topical and systemic application of antimicrobial agents effectively reduces biofilm at early stages. Future studies with sustained release of antimicrobial and biofilm-dispersing agents tailored to specific pathogens are warranted to achieve biofilm eradication. Cite this article: Bone Joint Res 2022;11(10):700–714


Bone & Joint Research
Vol. 13, Issue 12 | Pages 703 - 715
3 Dec 2024
Raza IGA Snelling SJB Mimpen JY

Aims. Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease. Methods. A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed. Results. A total of 161 studies were included, which covered capsule, ligaments, meniscus, skeletal muscle, synovium, and tendon in both humans and animals, and fat pad and intervertebral disc in humans only. These studies covered a wide variety of ECM features, including individual ECM components (i.e. collagens, proteoglycans, and glycoproteins), ECM architecture (i.e. collagen fibre organization and diameter), and viscoelastic properties (i.e. elastic and compressive modulus). Some ECM changes, notably calcification and the loss of collagen fibre organization, have been extensively studied across osteoarthritic tissues. However, most ECM features were only studied by one or a few papers in each tissue. When comparisons were possible, the results from animal experiments largely concurred with those from human studies, although some findings were contradictory. Conclusion. Changes in ECM composition and architecture occur throughout non-cartilage soft tissues in the osteoarthritic joint, but most of these remain poorly defined due to the low number of studies and lack of healthy comparator groups. Cite this article: Bone Joint Res 2024;13(12):703–715


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc. Cite this article: Bone Joint Res 2013;2:169–78


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on fracture healing by generating standardized micromotion to small animal models. Cite this article: Bone Joint Res 2021;10(11):714–722


Bone & Joint Research
Vol. 13, Issue 4 | Pages 169 - 183
15 Apr 2024
Gil-Melgosa L Llombart-Blanco R Extramiana L Lacave I Abizanda G Miranda E Agirre X Prósper F Pineda-Lucena A Pons-Villanueva J Pérez-Ruiz A

Aims. Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. Methods. HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential. Results. Vorinostat, a HDACi compound, blocked the adipogenic transformation of muscle-associated FAPs in culture, promoting myogenic progression of the satellite cells. Furthermore, it protected muscle from degeneration after acute RC in mice in the earlier muscle degenerative stage after tenotomy. Conclusion. The HDACi vorinostat may be a candidate to prevent early muscular degeneration after RC injury. Cite this article: Bone Joint Res 2024;13(4):169–183


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives. Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries. Methods. We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis. Results. A total of 388 references were retrieved and 35 studies were included in this systematic review. The different biomaterials developed were analyzed and we found that they improve the biomechanical and histological characteristics of the repaired tendon. At meta-analysis, despite a high heterogeneity, it revealed a statistically significant effect in favour of the maximum load, the maximum stress, and the Young’s modulus between experimental and control groups. In the forest plot, the diamond was on the right side of the vertical line and did not intersect with the line, favouring experimental groups. Conclusions. This review of the literature demonstrates the heterogeneity in the tendon tissue engineering literature. Several biomaterials have been developed and have been shown to enhance tendon healing and regeneration with improved outcomes. Cite this article: D. González-Quevedo, I. Martínez-Medina, A. Campos, F. Campos, V. Carriel. Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 2018;7:318–324. DOI: 10.1302/2046-3758.74.BJR-2017-0326


Bone & Joint Research
Vol. 11, Issue 4 | Pages 189 - 199
13 Apr 2022
Yang Y Li Y Pan Q Bai S Wang H Pan X Ling K Li G

Aims. Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. Methods. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes. Results. Gross and histological examinations showed that TTT technique accelerated wound closure and enhanced the quality of the newly formed skin tissues. In the TTT group, haematoxylin and eosin (H&E) staining demonstrated a better epidermis and dermis recovery, while immunohistochemical staining showed that TTT technique promoted local collagen deposition. The TTT technique also benefited to angiogenesis and immunomodulation. In the TTT group, blood flow in the wound area was higher than that of other groups according to laser speckle imaging with more blood vessels observed. Enhanced neovascularization was seen in the TTT group with double immune-labelling of CD31 and α-Smooth Muscle Actin (α-SMA). The number of M2 macrophages at the wound site in the TTT group was also increased. Conclusion. The TTT technique accelerated wound healing through enhanced angiogenesis and immunomodulation. Cite this article: Bone Joint Res 2022;11(4):189–199


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims. The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Methods. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted. Results. A total of 30 studies were included, of which six studies used rats and 24 studies used mice. Osteoporosis or bone loss was induced in 14 studies. Interventions included ten with probiotics, three with prebiotics, nine with antibiotics, two with short-chain fatty acid (SCFA), six with vitamins and proteins, two with traditional Chinese medicine (TCM), and one with neuropeptide Y1R antagonist. In general, probiotics, prebiotics, nutritional interventions, and TCM were found to reverse the GM dysbiosis and rescue bone loss. Conclusion. Despite the positive therapeutic effect of probiotics, prebiotics, and nutritional or pharmaceutical interventions on osteoporosis, there is still a critical knowledge gap regarding the role of GM in rescuing bone loss and its related pathways. Cite this article: Bone Joint Res 2021;10(1):51–59


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives. This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling. Methods. A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group. Results. A total of 572 references were retrieved and 27 were included. Animal models were used in 26 articles, and one article described a human study. Osteoporotic models were included in 11 papers. All articles showed similar or increased effect of Sr in bone formation and/or regeneration, in both healthy and osteoporotic models. No study found a decreased effect. Adverse effects were assessed in 17 articles, 13 on local and four on systemic adverse effects. From these, only one reported a systemic impact from Sr addition. Data on gene and/or protein expression were available from seven studies. Conclusions. This review showed the safety and effectiveness of Sr-enriched biomaterials for stimulating bone formation and remodelling in animal models. The effect seems to increase over time and is impacted by the concentration used. However, included studies present a wide range of study methods. Future work should focus on consistent models and guidelines when developing a future clinical application of this element. Cite this article: N. Neves, D. Linhares, G. Costa, C. C. Ribeiro, M. A. Barbosa. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res 2017;6:366–375. DOI: 10.1302/2046-3758.66.BJR-2016-0311.R1


Bone & Joint Research
Vol. 4, Issue 1 | Pages 1 - 5
1 Jan 2015
Vázquez-Portalatín N Breur GJ Panitch A Goergen CJ

Objective . Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis, were used to determine if high frequency ultrasound can ensure intra-articular injections are accurately positioned in the knee joint. Methods. A high-resolution small animal ultrasound system with a 40 MHz transducer was used for image-guided injections. A total of 36 guinea pigs were anaesthetised with isoflurane and placed on a heated stage. Sterile needles were inserted directly into the knee joint medially, while the transducer was placed on the lateral surface, allowing the femur, tibia and fat pad to be visualised in the images. B-mode cine loops were acquired during 100 µl. We assessed our ability to visualise 1) important anatomical landmarks, 2) the needle and 3) anatomical changes due to the injection. . Results. From the ultrasound images, we were able to visualise clearly the movement of anatomical landmarks in 75% of the injections. The majority of these showed separation of the fat pad (67.1%), suggesting the injections were correctly delivered in the joint space. We also observed dorsal joint expansion (23%) and patellar tendon movement (10%) in a smaller subset of injections. Conclusion. The results demonstrate that this image-guided technique can be used to visualise the location of an intra-articular injection in the joints of guinea pigs. Future studies using an ultrasound-guided approach could help improve the injection accuracy in a variety of anatomical locations and animal models, in the hope of developing anti-arthritic therapies. Cite this article: Bone Joint Res 2015;4:1–5


Bone & Joint Research
Vol. 10, Issue 3 | Pages 156 - 165
1 Mar 2021
Yagi H Kihara S Mittwede PN Maher PL Rothenberg AC Falcione ADCM Chen A Urish KL Tuan RS Alexander PG

Aims. Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods. Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 10. 9. colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results. Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion. Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims. Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods. OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results. Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion. Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims. Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. Methods. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture. Results. All rats achieved healing, and x-ray relative radiopacity for OVX-VT was significantly higher compared to OVX at week 2. Martius Scarlet Blue (MSB) staining revealed a significant decrease of fibrin content in the callus in OVX-VT compared with OVX on day 3 (p = 0.020). Mean tPA from muscle was significantly higher for OVX-VT compared to OVX (p = 0.020) on day 3. Mechanical testing revealed the mean energy to failure was significantly higher for OVX-VT at 37.6 N mm (SD 8.4) and 71.9 N mm (SD 30.7) compared with OVX at 5.76 N mm (SD 7.1) (p = 0.010) and 17.7 N mm (SD 11.5) (p = 0.030) at week 2 and week 6, respectively. Conclusion. Metaphyseal fracture healing is enhanced by LMHFV, and one of the important molecular pathways it acts on is fibrinolysis. LMHFV is a promising intervention for osteoporotic metaphyseal fracture healing. The improved mechanical properties, acceleration of fracture healing, and safety justify its role into translation to future clinical studies. Cite this article: Bone Joint Res 2021;10(1):41–50


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives. Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion. The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res 2017;6:385–390. DOI: 10.1302/2046-3758.66.BJR-2017-0023


Bone & Joint Research
Vol. 6, Issue 12 | Pages 656 - 664
1 Dec 2017
Morita W Dakin SG Snelling SJB Carr AJ

Objectives. Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. Methods. We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included. Results. IL-1β, IL-6, IL-10, and TNF-α are the cytokines that have been most frequently investigated. In clinical samples of tendinopathy and tendon tears, the expression of TNF-α tended not to change but IL-6 increased in tears. Healthy human tendons showed increased IL-6 expression after exercise; however, IL-10 remained unchanged. Animal tendon injury models showed that IL-1β, IL-6, and TNF-α tend to increase from the early phase of tendon healing. In animal exercise studies, IL-1β expression showed a tendency to increase at the early stage after exercise, but IL-10 expression remained unchanged with exercise. Conclusions. This review highlights the roles of IL-1β, IL-6, IL-10, and TNF-α in the development of tendon disease, during tendon healing, and in response to exercise. However, there is evidence accumulating that suggests that other cytokines are also contributing to tendon inflammatory processes. Further work with hypothesis-free methods is warranted in order to identify the key cytokines, with subsequent mechanistic and interaction studies to elucidate their roles in tendon disease development. Cite this article: W. Morita, S. G. Dakin, S. J. B. Snelling, A. J. Carr. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656–664. DOI: 10.1302/2046-3758.612.BJR-2017-0112.R1


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims. Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Methods. Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone. Results. Stepwise preconditioning approach significantly enhanced the proliferation and chondrogenic potential of ageing hMSCs at early passage. Interestingly, remarkably lower immunogenicity and senescence was also found in hM-MSCs. Data from animal studies showed cartilage damage was retarded and subchondral bone remodelling was prevented by the treatment of preconditioned MSCs. The therapeutic effect depended on the number of cells applied to animals, with the best effect observed when treated with eight millions of hM-MSCs. Conclusion. This study demonstrated a reliable and feasible stepwise preconditioning strategy to improve the safety and efficacy of ageing MSCs for the prevention of OA development. Cite this article: Bone Joint Res 2021;10(1):10–21


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


Aims. In wound irrigation, 1 mM ethylenediaminetetraacetic acid (EDTA) is more efficacious than normal saline (NS) in removing bacteria from a contaminated wound. However, the optimal EDTA concentration remains unknown for different animal wound models. Methods. The cell toxicity of different concentrations of EDTA dissolved in NS (EDTA-NS) was assessed by Cell Counting Kit-8 (CCK-8). Various concentrations of EDTA-NS irrigation solution were compared in three female Sprague-Dawley rat models: 1) a skin defect; 2) a bone exposed; and 3) a wound with an intra-articular implant. All three models were contaminated with Staphylococcus aureus or Escherichia coli. EDTA was dissolved at a concentration of 0 (as control), 0.1, 0.5, 1, 2, 5, 10, 50, and 100 mM in sterile NS. Samples were collected from the wounds and cultured. The bacterial culture-positive rate (colony formation) and infection rate (pus formation) of each treatment group were compared after irrigation and debridement. Results. Cell viability intervened below 10 mM concentrations of EDTA-NS showed no cytotoxicity. Concentrations of 1, 2, and 5 mM EDTA-NS had lower rates of infection and positive cultures for S. aureus and E. coli compared with other concentrations in the skin defect model. For the bone exposed model, 0.5, 1, and 2 mM EDTA-NS had lower rates of infection and positive cultures. For intra-articular implant models 10 and 50 mM, EDTA-NS had the lowest rates of infection and positive cultures. Conclusion. The concentrations of EDTA-NS below 10 mM are safe for irrigation. The optimal concentration of EDTA-NS varies by type of wound after experimental inoculation of three types of wound. Cite this article: Bone Joint Res 2021;10(1):68–76


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives. Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis. Materials and Methods. A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis. Results. Animals that underwent arthrotomy had equivalent joint contractures regardless of scaffold implantation (-13.9° versus -10.9°, equivalence limit 15°). Animals that underwent surgery to induce contracture did not demonstrate equivalent joint contractures with (41.8°) or without (53.9°) collagen scaffold implantation. Chondral damage occurred in similar rates with (11 of 48) and without (nine of 48) scaffold implantation. No significant difference in synovitis was noted between groups. Absorption of the collagen scaffold occurred within eight weeks in all animals. Conclusion. Our data suggest that intra-articular implantation of a collagen sponge does not induce synovitis or cartilage damage. Implantation in a native joint does not seem to induce contracture. Implantation of the collagen sponge in a rabbit knee model of contracture may decrease the severity of the contracture. Cite this article: J. A. Walker, T. J. Ewald, E. Lewallen, A. Van Wijnen, A. D. Hanssen, B. F. Morrey, M. E. Morrey, M. P. Abdel, J. Sanchez-Sotelo. Intra-articular implantation of collagen scaffold carriers is safe in both native and arthrofibrotic rabbit knee joints. Bone Joint Res 2016;6:162–171. DOI: 10.1302/2046-3758.63.BJR-2016-0193


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives. The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model. Methods. A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively. Results. There was no statistical difference in the flexion contracture angles between those limbs that received intra-articular decorin versus those that received intra-articular BSA (66° vs 69°; p = 0.41). Likewise, there was no statistical difference between those limbs that received intra-articular decorin versus those who had no injection (66° vs 72°; p = 0.27). When compared with BSA, decorin led to a statistically significant increase in the mRNA expression of 12 genes (p < 0.01). In addition, there was a statistical change in the mRNA expression of three genes, when compared with those without injection. . Conclusions. In this model, when administered intra-articularly at eight weeks, 2 mg of decorin had no significant effect on joint contractures. However, our genetic analysis revealed a significant alteration in several fibrotic genes. Cite this article: Bone Joint Res 2014;3:82–8


Bone & Joint Research
Vol. 7, Issue 5 | Pages 327 - 335
1 May 2018
Sato Y Akagi R Akatsu Y Matsuura Y Takahashi S Yamaguchi S Enomoto T Nakagawa R Hoshi H Sasaki T Kimura S Ogawa Y Sadamasu A Ohtori S Sasho T

Objectives. To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model. Methods. Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing. Results. Histologically, both groups showed a mixture of direct and indirect healing patterns at four weeks, whereas only indirect healing patterns were observed in both groups at eight weeks. No significant histological differences were seen between the two groups at four and eight weeks in the roof zone (four weeks, S: mean 4.8 . sd. 1.7, T: mean 4.5 . sd. 0.5, p = 0.14; eight weeks, S: mean 5.8 . sd. 0.8, T: mean 4.8 . sd. 1.8, p = 0.88, Mann-Whitney U test) or side zone (four weeks, S: mean 5.0 . sd. 1.2, T: mean 4.8 . sd. 0.4, p = 0.43; eight weeks, S: mean 5.3 . sd. 0.8,T: mean 5.5 . sd. 0.8, p = 0.61, Mann-Whitney U test) . Similarly, no significant difference was seen in the maximum failure load between group S and group T at four (15.6 . sd. 9.0N and 13.1 . sd. 5.6N) or eight weeks (12.6 . sd. 3.6N and 17.1 . sd. 6.4N, respectively). Conclusion. Regardless of bone tunnel configuration, tendon-bone healing after ACL reconstruction primarily occurred through indirect healing. No significant histological or mechanical differences were observed between adjustable and fixed-loop femoral cortical suspension methods. Cite this article: Y. Sato, R. Akagi, Y. Akatsu, Y. Matsuura, S. Takahashi, S. Yamaguchi, T. Enomoto, R. Nakagawa, H. Hoshi, T. Sasaki, S. Kimura, Y. Ogawa, A. Sadamasu, S. Ohtori, T. Sasho. The effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament reconstruction: An animal study. Bone Joint Res 2018;7:327–335. DOI: 10.1302/2046-3758.75.BJR-2017-0238.R2


Bone & Joint Research
Vol. 1, Issue 11 | Pages 289 - 296
1 Nov 2012
Savaridas T Wallace RJ Muir AY Salter DM Simpson AHRW

Objectives. Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. Methods. A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. Results. Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm. 2. (. sd. 6.15). Histology revealed ‘cutting-cones’ traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. Conclusions. A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing


Bone & Joint Research
Vol. 5, Issue 4 | Pages 137 - 144
1 Apr 2016
Paterson SI Eltawil NM Simpson AHRW Amin AK Hall AC

Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes. Methods. The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively. Results. Joint drying caused extensive chondrocyte death within the superficial regions of cartilage. Histology of dried cartilage demonstrated a loss of surface integrity at four weeks, fibrillations at eight weeks, and an increased modified Mankin score (p < 0.001). Cartilage thickness increased (p < 0.001), whereas chondrocyte density decreased at four weeks (p < 0.001), but then increased towards sham-operated levels (p < 0.01) at eight weeks. By week eight, chondrocyte pairing/clustering and cell volume increased (p < 0.05; p < 0.001, respectively). Conclusions. These in vivo results demonstrated for the first time that as a result of laminar airflow, cartilage degeneration occurred which has characteristics similar to those seen in early osteoarthritis. Maintenance of adequate cartilage hydration during open orthopaedic surgery is therefore of paramount importance. Cite this article: Dr A. Hall. Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Joint Res 2016;5:137–144. DOI: 10.1302/2046-3758.54.2000594


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction. Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair. Methods. In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Results. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving MSCs showed a lower degree of cartilage degeneration, osteophyte formation, and subchondral sclerosis than the control group at 20 weeks post-operatively. The quality of cartilage was significantly better in the cell-treated group compared with the control group after 20 weeks. Conclusions. Bone marrow-derived MSCs could be promising cell sources for the treatment of OA. Neither stem cell culture nor scaffolds are absolutely necessary for a favourable outcome. Cite this article: Bone Joint Res 2014;3:32–7


Bone & Joint Research
Vol. 7, Issue 2 | Pages 179 - 186
1 Feb 2018
Wu T Zhang J Wang B Sun Y Liu Y Li G

Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on fracture healing. Materials and Methods. Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses. Results. While SEC2 was found to have no effect on rat MSCs proliferation, it promoted the osteoblast differentiation of rat MSCs. In the rat femoral fracture model, the local administration of SEC2 accelerated fracture healing by increasing fracture callus volumes, bone volume over total volume (BV/TV), and biomechanical recovery. The SEC2 treatment group has superior histological appearance compared with the control group. Conclusion. These data suggest that local administration of SEC2 may be a novel therapeutic approach to enhancing bone repair such as fracture healing. Cite this article: T. Wu, J. Zhang, B. Wang, Y. Sun, Y. Liu, G. Li. Staphylococcal enterotoxin C2 promotes osteogenesis of mesenchymal stem cells and accelerates fracture healing. Bone Joint Res 2018;7:179–186. DOI: 10.1302/2046-3758.72.BJR-2017-0229.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


Bone & Joint Research
Vol. 12, Issue 3 | Pages 212 - 218
9 Mar 2023
Buchalter DB Kirby DJ Anil U Konda SR Leucht P

Aims

Glucose-insulin-potassium (GIK) is protective following cardiac myocyte ischaemia-reperfusion (IR) injury, however the role of GIK in protecting skeletal muscle from IR injury has not been evaluated. Given the similar mechanisms by which cardiac and skeletal muscle sustain an IR injury, we hypothesized that GIK would similarly protect skeletal muscle viability.

Methods

A total of 20 C57BL/6 male mice (10 control, 10 GIK) sustained a hindlimb IR injury using a 2.5-hour rubber band tourniquet. Immediately prior to tourniquet placement, a subcutaneous osmotic pump was placed which infused control mice with saline (0.9% sodium chloride) and treated mice with GIK (40% glucose, 50 U/l insulin, 80 mEq/L KCl, pH 4.5) at a rate of 16 µl/hr for 26.5 hours. At 24 hours following tourniquet removal, bilateral (tourniqueted and non-tourniqueted) gastrocnemius muscles were triphenyltetrazolium chloride (TTC)-stained to quantify percentage muscle viability. Bilateral peroneal muscles were used for gene expression analysis, serum creatinine and creatine kinase activity were measured, and a validated murine ethogram was used to quantify pain before euthanasia.


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 8, Issue 10 | Pages 472 - 480
1 Oct 2019
Hjorthaug GA Søreide E Nordsletten L Madsen JE Reinholt FP Niratisairak S Dimmen S

Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. Methods. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks. Results. For ultimate bending moment, the median ratio between fractured and non-fractured tibia was 0.61 (interquartile range (IQR) 0.45 to 0.82) in the Pi group, 0.44 (IQR 0.42 to 0.52) in the Pd group, and 0.50 (IQR 0.41 to 0.75) in the control group (n = 44; p = 0.068). There were no differences between the groups for stiffness, energy, deflection, callus diameter, DXA measurements (n = 64), histomorphometrically osteoid/bone ratio, or callus area (n = 20). Conclusion. This study demonstrates no negative effect of immediate or delayed short-term administration of parecoxib on diaphyseal fracture healing in rats. Cite this article: G. A. Hjorthaug, E. Søreide, L. Nordsletten, J. E. Madsen, F. P. Reinholt, S. Niratisairak, S. Dimmen. Short-term perioperative parecoxib is not detrimental to shaft fracture healing in a rat model. Bone Joint Res 2019;8:472–480. DOI: 10.1302/2046-3758.810.BJR-2018-0341.R1


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims

The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis.

Methods

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 734 - 746
12 Dec 2023
Chen M Hu C Hsu Y Lin Y Chen K Ueng SWN Chang Y

Aims

Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown.

Methods

We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims

The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus.

Methods

We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 585 - 593
1 Aug 2022
Graham SM Jalal MMK Lalloo DG Hamish R. W. Simpson A

Aims

A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process.

Methods

A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing.


Bone & Joint Research
Vol. 1, Issue 7 | Pages 158 - 166
1 Jul 2012
Dean BJF Franklin SL Carr AJ

Introduction. The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD. Methods. We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria. Results. A total of 101 studies met the inclusion criteria: 92 studies used human subjects exclusively, seven used animal overuse models, and the remaining two studies involved both humans and an animal overuse model. A total of 58 studies analysed supraspinatus tendon exclusively, 16 analysed subacromial bursal tissue exclusively, while the other studies analysed other tissue or varying combinations of tissue types including joint fluid and muscle. The molecular biomarkers that were altered in RCD included matrix substances, growth factors, enzymes and other proteins including certain neuropeptides. Conclusions. The pathogenesis of RCD is being slowly unravelled as a result of the significant recent advances in molecular medicine. Future research aimed at further unlocking these key molecular processes will be pivotal in developing new surgical interventions both in terms of the diagnosis and treatment of RCD


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.


Bone & Joint Research
Vol. 13, Issue 8 | Pages 383 - 391
2 Aug 2024
Mannala GK Rupp M Walter N Youf R Bärtl S Riool M Alt V

Aims

Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella.

Methods

For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 504 - 511
23 Aug 2023
Wang C Liu S Chang C

Aims

This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model.

Methods

A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 121 - 132
1 Feb 2023
Mo H Wang Z He Z Wan J Lu R Wang C Chen A Cheng P

Aims

Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA.

Methods

After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims

The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI.

Methods

Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20).


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims

Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear.

Methods

In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Aims

Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation.

Methods

Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims

Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis.

Methods

The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims

The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty.

Methods

A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 764 - 778
12 Dec 2024
Huang Q Zhuo Y Duan Z Long Y Wang J Zhang Z Fan S Huang Y Deng K Xin H

Aims

Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application.

Methods

In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims

This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated.

Methods

Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 750 - 763
11 Dec 2024
Xie C Gong J Zheng C Zhang J Gao J Tian C Guo X Dai S Gao T

Aims

This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone metabolism in middle-aged and older adults.

Methods

The databases of PubMed, Web of Science, and Cochrane Library were thoroughly searched from inception to July 2023.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims

Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism.

Methods

A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 528 - 540
1 Aug 2022
Dong W Postlethwaite BC Wheller PA Brand D Jiao Y Li W Myers LK Gu W

Aims

This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D.

Methods

A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims

There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV.

Methods

A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims

The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold.

Methods

Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims

Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release.

Methods

A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 723 - 738
4 Oct 2022
Liu Z Shen P Lu C Chou S Tien Y

Aims

Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism.

Methods

Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims

Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model.

Methods

The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims

To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction.

Methods

In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 26 - 28
20 Jan 2022
Ma M Tan Z Li W Zhang H Liu Y Yue C


Bone & Joint Research
Vol. 11, Issue 7 | Pages 484 - 493
13 Jul 2022
Hayer S Niederreiter B Kalkgruber M Wanic K Maißner J Smolen JS Aletaha D Blüml S Redlich K

Aims

Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss.

Methods

Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/-hTNFtg in comparison to IL1-/-hTNFtg, IL6-/-hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 260 - 269
3 May 2022
Staats K Sosa BR Kuyl E Niu Y Suhardi V Turajane K Windhager R Greenblatt MB Ivashkiv L Bostrom MPG Yang X

Aims

To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants.

Methods

3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2022;11(5):292–300.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive.

Methods

A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 571 - 573
2 Sep 2021
Beverly MC Murray DW


Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims

The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation.

Methods

Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims

Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone.

Methods

The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims

Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism.

Methods

Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 149 - 155
16 Feb 2021
Shiels SM Sgromolo NM Wenke JC

Aims

High-energy injuries can result in multiple complications, the most prevalent being infection. Vancomycin powder has been used with increasing frequency in orthopaedic trauma given its success in reducing infection following spine surgery. Additionally, large, traumatic injuries require wound coverage and management by dressings such as negative pressure wound therapy (NPWT). NPWT has been shown to decrease the ability of antibiotic cement beads to reduce infection, but its effect on antibiotic powder is not known. The goal of this study was to determine if NPWT reduces the efficacy of topically applied antibiotic powder.

Methods

Complex musculoskeletal wounds were created in goats and inoculated with a strain of Staphylococcus aureus modified to emit light. Six hours after contaminating the wounds, imaging, irrigation, and debridement and treatment application were performed. Animals received either vancomycin powder with a wound pouch dressing or vancomycin powder with NPWT.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims

Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA.

Methods

For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed.


Aims

This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA).

Methods

Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 259 - 268
1 Apr 2021
Lou A Wang L Lai W Zhu D Wu W Wang Z Cai Z Yang M

Aims

Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel biomarker of oxidative stress, have been observed to accumulate significantly in the serum of RA patients. Here, we present the first investigation of the effects of AOPPs on RA-FLSs and the signalling pathway involved in AOPP-induced inflammatory responses and invasive behaviour.

Methods

We used different concentrations of AOPPs (50 to 200 µg/ml) to treat RA-FLSs. Cell migration and invasion and the expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), and MMP-13 were investigated. Western blot and immunofluorescence were used to analyze nuclear factor-κB (NF-κB) activation.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 789 - 797
2 Nov 2020
Seco-Calvo J Sánchez-Herráez S Casis L Valdivia A Perez-Urzelai I Gil J Echevarría E

Aims

To analyze the potential role of synovial fluid peptidase activity as a measure of disease burden and predictive biomarker of progression in knee osteoarthritis (KOA).

Methods

A cross-sectional study of 39 patients (women 71.8%, men 28.2%; mean age of 72.03 years (SD 1.15) with advanced KOA (Ahlbäck grade ≥ 3 and clinical indications for arthrocentesis) recruited through the (Orthopaedic Department at the Complejo Asistencial Universitario de León, Spain (CAULE)), measuring synovial fluid levels of puromycin-sensitive aminopeptidase (PSA), neutral aminopeptidase (NAP), aminopeptidase B (APB), prolyl endopeptidase (PEP), aspartate aminopeptidase (ASP), glutamyl aminopeptidase (GLU) and pyroglutamyl aminopeptidase (PGAP).


Bone & Joint Research
Vol. 10, Issue 8 | Pages 488 - 497
10 Aug 2021
Cleemann R Sorensen M West A Soballe K Bechtold JE Baas J

Aims

We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants.

Methods

An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims

Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model.

Methods

Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies.