Objectives. The radiographic
Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.Aims
Methods
Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process. Methods. A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological
Aims. This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. Methods. A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data. Results. After the screening, 44 studies were included with 1,079 patients and 1,083 segments of infected bone defects treated with the induced membrane technique. The mean defect size was 6.8 cm (0.5 to 30). After the index second stage procedure, 85% (797/942) of segments achieved
Aims. Fracture-related infection (FRI) is commonly classified based on the time of onset of symptoms. Early infections (< two weeks) are treated with debridement, antibiotics, and implant retention (DAIR). For late infections (> ten weeks), guidelines recommend implant removal due to tolerant biofilms. For delayed infections (two to ten weeks), recommendations are unclear. In this study we compared infection clearance and bone healing in early and delayed FRI treated with DAIR in a rabbit model. Methods. Staphylococcus aureus was inoculated into a humeral osteotomy in 17 rabbits after plate osteosynthesis. Infection developed for one week (early group, n = 6) or four weeks (delayed group, n = 6) before DAIR (systemic antibiotics: two weeks, nafcillin + rifampin; four weeks, levofloxacin + rifampin). A control group (n = 5) received revision surgery after four weeks without antibiotics. Bacteriology of humerus, soft-tissue, and implants was performed seven weeks after revision surgery. Bone healing was assessed using a modified radiological
Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results. Nine of the ten patients achieved
Aims. Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on trauma infrastructures. This study aims to identify what, and how, outcomes have been reported for people following open lower limb fracture over ten years. Methods. Systematic literature searches identified all clinical studies reporting outcomes for adults following open lower limb fracture between January 2009 and July 2019. All outcomes and outcome measurement instruments were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using an outcome taxonomy. Results. A total of 532 eligible studies were identified, reporting 1,803 outcomes with 786 unique outcome terms, which collapsed to 82 standardized outcome headings. Overall 479 individual outcome measurement instruments were identified, including 298 outcome definitions, 27 patient- and 18 clinician-reported outcome measures, and six physical performance measures. The most-reported outcome was ‘bone
Aims. To evaluate if
Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating fracture healing. Methods. A 1.5 mm femoral osteotomy (delayed
Aims. The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures. Methods. A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively. Results. Compared with the control group, the ERAS group had a shorter operating time, hospital stay, preoperative waiting time, postoperative discharge time, less intraoperative blood loss, and higher albumin and haemoglobin on the first postoperative day. The time to removal of the urinary catheter/drainage tube was shortened, and the drainage volume was also significantly reduced in the ERAS group. There was no significant difference in the visual analogue scale (VAS) scores on postoperative return to the ward, but the ERAS group had lower scores on the first, second, and third postoperative days. There were no significant differences in the incidence of complications, other than 10% more nausea and vomiting in the control group. The limb function scores at one-year follow-up were similar between the two groups, but time to radiological fracture
Objectives. The aim of this study was to review the current evidence and future application for the role of diagnostic and therapeutic ultrasound in fracture management. Methods. A review of relevant literature was undertaken, including articles indexed in PubMed with keywords “ultrasound” or “sonography” combined with “diagnosis”, “fracture healing”, “impaired fracture healing”, “nonunion”, “microbiology”, and “fracture-related infection”. Results. The use of ultrasound in musculoskeletal medicine has expanded rapidly over the last two decades, but the diagnostic use in fracture management is not routinely practised. Early studies have shown the potential of ultrasound as a valid alternative to radiographs to diagnose common paediatric fractures, to detect occult injuries in adults, and for rapid detection of long bone fractures in the resuscitation setting. Ultrasound has also been shown to be advantageous in the early identification of impaired fracture healing; with the advent of 3D image processing, there is potential for wider adoption. Detection of implant-related infection can be improved by ultrasound mediated sonication of microbiology samples. The use of therapeutic ultrasound to promote
Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq).Aims
Methods
Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up. A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.Aims
Methods
Cite this article:
Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared.Aims
Methods
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.Aims
Methods
To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Aims
Methods
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.Aims
Methods
The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.Aims
Methods
This observational cross-sectional study aimed to answer the following questions: 1) how has nonunion incidence developed from 2009 to 2019 in a nationwide cohort; 2) what is the age and sex distribution of nonunions for distinct anatomical nonunion localizations; and 3) how high were the costs for surgical nonunion treatment in a level 1 trauma centre in Germany? Data consisting of annual International Classification of Diseases (ICD)-10 diagnosis codes from German medical institutions from 2009 to 2019, provided by the Federal Statistical Office of Germany (Destatis), were analyzed. Nonunion incidence was calculated for anatomical localization, sex, and age groups. Incidence rate ratios (IRRs) were determined and compared with a two-sample z-test. Diagnosis-related group (DRG)-reimbursement and length of hospital stay were retrospectively retrieved for each anatomical localization, considering 210 patients.Aims
Methods
Bone turnover markers (BTMs) follow distinct trends after fractures and limited evidence suggests differential levels in BTMs in patients with delayed healing. The effect of vitamin D, and other factors that influence BTMs and fracture healing, is important to elucidate the use of BTMs as surrogates of fracture healing. We sought to determine whether BTMs can be used as early markers of delayed fracture healing, and the effect of vitamin D on BTM response after fracture. A total of 102 participants aged 18 to 50 years (median 28 years (interquartile range 23 to 35)), receiving an intramedullary nail for a tibial or femoral shaft fracture, were enrolled in a randomized controlled trial comparing vitamin D3 supplementation to placebo. Serum C-terminal telopeptide of type I collagen (CTX; bone resorption marker) and N-terminal propeptide of type I procollagen (P1NP; bone formation marker) were measured at baseline, six weeks, and 12 weeks post-injury. Clinical and radiological fracture healing was assessed at three months.Aims
Methods
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article:
The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing. A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed.Aims
Methods
Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.Aims
Methods
To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.Aims
Methods
Objectives. The annual incidence of hip fracture is 620 000 in the European
In wound irrigation, 1 mM ethylenediaminetetraacetic acid (EDTA) is more efficacious than normal saline (NS) in removing bacteria from a contaminated wound. However, the optimal EDTA concentration remains unknown for different animal wound models. The cell toxicity of different concentrations of EDTA dissolved in NS (EDTA-NS) was assessed by Cell Counting Kit-8 (CCK-8). Various concentrations of EDTA-NS irrigation solution were compared in three female Sprague-Dawley rat models: 1) a skin defect; 2) a bone exposed; and 3) a wound with an intra-articular implant. All three models were contaminated with Aims
Methods
Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture.Aims
Methods
Objectives. The use of two implants to manage concomitant ipsilateral femoral
shaft and proximal femoral fractures has been indicated, but no
studies address the relationship of dynamic hip screw (DHS) side
plate screws and the intramedullary nail where failure might occur
after
We hypothesized that the wide-awake local anaesthesia with no tourniquet (WALANT) technique is cost-effective, easy to use, safe, and reproducible, with a low learning curve towards mastery, having a high patient satisfaction rate. Furthermore, WALANT would be a suitable alternative for the austere and developing nation environments where lack of funds and resources are a common issue. This was a randomized control trial of 169 patients who required surgery for closed isolated distal radius fractures. The study was performed between March 2016 and April 2019 at a public sector level 1 trauma centre. General anaesthesia was used in 56 patients, Bier’s block in 58 patients, and WALANT in 55 patients. Data were collected on pre-, peri-, and postoperative parameters, clinical outcome, hospital costs, and patient satisfaction. One-way analysis of variance (ANOVA) was used with a p-value of 0.05 being significant.Aims
Methods
In the context of tendon degenerative disorders, the need for innovative conservative treatments that can improve the intrinsic healing potential of tendon tissue is progressively increasing. In this study, the role of pulsed electromagnetic fields (PEMFs) in improving the tendon healing process was evaluated in a rat model of collagenase-induced Achilles tendinopathy. A total of 68 Sprague Dawley rats received a single injection of type I collagenase in Achilles tendons to induce the tendinopathy and then were daily exposed to PEMFs (1.5 mT and 75 Hz) for up to 14 days - starting 1, 7, or 15 days after the injection - to identify the best treatment option with respect to the phase of the disease. Then, 7 and 14 days of PEMF exposure were compared to identify the most effective protocol.Aims
Methods
This study is a prospective, non-randomized trial for the treatment of fractures of the medial malleolus using lean, bioabsorbable, rare-earth element (REE)-free, magnesium (Mg)-based biodegradable screws in the adult skeleton. A total of 20 patients with isolated, bimalleolar, or trimalleolar ankle fractures were recruited between July 2018 and October 2019. Fracture reduction was achieved through bioabsorbable Mg-based screws composed of pure Mg alloyed with zinc (Zn) and calcium (Ca) ( Mg-Zn0.45-Ca0.45, in wt.%; ZX00). Visual analogue scale (VAS) and the presence of complications (adverse events) during follow-up (12 weeks) were used to evaluate the clinical outcomes. The functional outcomes were analyzed through the range of motion (ROM) of the ankle joint and the American Orthopaedic Foot and Ankle Society (AOFAS) score. Fracture reduction and gas formation were assessed using several plane radiographs.Aims
Methods
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article:
The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from synovial fluid of prosthetic joint infection (PJI) patients. A group of 75 patients who underwent revision knee or hip arthroplasties were enrolled prospectively. Ten patients with primary arthroplasties were included as negative controls. Synovial fluid was collected for mNGS analysis. Optimal thresholds were determined to distinguish pathogens from background microbes. Synovial fluid, tissue, and sonicate fluid were obtained for culture.Aims
Methods
Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks.Objectives
Methods
The aim of this study was to review the impact of smoking tobacco on the musculoskeletal system, and on bone fractures in particular. English-language publications of human and animal studies categorizing subjects into smokers and nonsmokers were sourced from MEDLINE, The Cochrane Library, and SCOPUS. This review specifically focused on the risk, surgical treatment, and prevention of fracture complications in smokers.Objectives
Methods
Different criteria for assessing the reduction quality of trochanteric fractures have been reported. The Baumgaertner reduction quality criteria (BRQC) are relatively common and the Chang reduction quality criteria (CRQC) are relatively new. The objectives of the current study were to compare the reliability of the BRQC and CRQC in predicting mechanical complications and to investigate the clinical implications of the CRQC. A total of 168 patients were assessed in a retrospective observational study. Clinical information including age, sex, fracture side, American Society of Anesthesiologists (ASA) classification, tip-apex distance (TAD), fracture classification, reduction quality, blade position, BRQC, CRQC, bone quality, and the occurrence of mechanical complications were used in the statistical analysis.Objectives
Methods
Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done. We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.Objectives
Methods
Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix).Objectives
Materials and Methods
Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint.Objectives
Methods
As one of the heat-stable enterotoxins, Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses.Objectives
Materials and Methods
The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.Objectives
Methods
Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. Tibial fractures were created and then stabilized in control wild-type (WT) and Objectives
Methods
As well as debridement and irrigation, soft-tissue coverage, and osseous stabilization, systemic antibiotic prophylaxis is considered the benchmark in the management of open fractures and considerably reduces the risk of subsequent fracture-related infections (FRI). The direct application of antibiotics in the surgical field (local antibiotics) has been used for decades as additional prophylaxis in open fractures, although definitive evidence confirming a beneficial effect is scarce. The purpose of the present study was to review the clinical evidence regarding the effect of prophylactic application of local antibiotics in open limb fractures. A comprehensive literature search was performed in PubMed, Web of Science, and Embase. Cohort studies investigating the effect of additional local antibiotic prophylaxis compared with systemic prophylaxis alone in the management of open fractures were included and the data were pooled in a meta-analysis.Objectives
Methods