Objectives. To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single implant type. Methods. A total of 136 patients who received either a 2.4 mm (n = 61)
or 3.5 mm (n = 75) distal radius locking compression plate (LCP
DR) using a volar approach were followed over two years. The main
outcome measurements included motion, grip strength, pain, and the
scores of Gartland and Werley, the Short-Form 36 (SF-36) and the
Disabilities of the Arm, Shoulder, and Hand (DASH). Differences
between the treatment groups were evaluated using regression analysis
and the likelihood ratio test with significance based on the Bonferroni
corrected p-value of <
0.003. Results. The groups were similar with respect to baseline and injury characteristics
as well as general surgical details. The risk of experiencing a
complication after ORIF with a LCP DR 2.4 mm was 18% (n = 11) compared
with 11% (n = 8) after receiving a LCP DR 3.5 mm (p = 0.45). Wrist
function was also similar between the cohorts based on the mean ranges
of
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion. Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.Objectives
Methods
The monitoring of fracture healing is a complex process. Typically, successive radiographs are performed and an emerging calcification of the fracture area is evaluated. The aim of this study was to investigate whether different bone healing patterns can be distinguished using a telemetric instrumented femoral internal plate fixator. An electronic telemetric system was developed to assess bone healing mechanically. The system consists of a telemetry module which is applied to an internal locking plate fixator, an external reader device, a sensor for measuring externally applied load and a laptop computer with processing software. By correlation between externally applied load and load measured in the implant, the elasticity of the osteosynthesis is calculated. The elasticity decreases with ongoing consolidation of a fracture or nonunion and is an appropriate parameter for the course of bone healing. At our centre, clinical application has been performed in 56 patients suffering nonunion or fracture of the femur.Objectives
Materials and Methods
The radiographic union score for tibial (RUST) fractures was developed by Whelan et al to assess the healing of tibial fractures following intramedullary nailing. In the current study, the repeatability and reliability of the RUST score was evaluated in an independent centre (a) using the original description, (b) after further interpretation of the description of the score, and (c) with the immediate post-operative radiograph available for comparison. A total of 15 radiographs of tibial shaft fractures treated by intramedullary nailing (IM) were scored by three observers using the RUST system. Following discussion on how the criteria of the RUST system should be implemented, 45 sets (i.e. AP and lateral) of radiographs of IM nailed tibial fractures were scored by five observers. Finally, these 45 sets of radiographs were rescored with the baseline post-operative radiograph available for comparison.Objectives
Methods
Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury. Ectopic bone forms
around joints in characteristic patterns, causing pain and limiting
movement especially around the hip and elbow. Clinical sequelae
of neurogenic heterotopic ossification include urinary tract infection,
pressure injuries, pneumonia and poor hygiene, making early diagnosis
and treatment clinically compelling. However, diagnosis remains
difficult with more investigation needed. Our pathophysiological
understanding stems from mechanisms of basic bone formation enhanced
by evidence of systemic influences from circulating humor factors
and perhaps neurological ones. This increasing understanding guides
our implementation of current prophylaxis and treatment including
the use of non-steroidal anti-inflammatory drugs, bisphosphonates,
radiation therapy and surgery and, importantly, should direct future, more
effective ones.
Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. Objectives
Methods
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive