External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion. Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed.Objectives
Methods
The PROximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial has recently demonstrated that surgery is non-superior to non-operative treatment in the management of displaced proximal humeral fractures. The objective of this study was to assess current surgical practice in the context of the PROFHER trial in terms of patient demographics, injury characteristics and the nature of the surgical treatment. A total of ten consecutive patients undergoing surgery for the treatment of a proximal humeral fracture from each of 11 United Kingdom hospitals were retrospectively identified over a 15 month period between January 2014 and March 2015. Data gathered for the 110 patients included patient demographics, injury characteristics, mode of surgical fixation, the grade of operating surgeon and the cost of the surgical implants.Objectives
Methods
The monitoring of fracture healing is a complex process. Typically, successive radiographs are performed and an emerging calcification of the fracture area is evaluated. The aim of this study was to investigate whether different bone healing patterns can be distinguished using a telemetric instrumented femoral internal plate fixator. An electronic telemetric system was developed to assess bone healing mechanically. The system consists of a telemetry module which is applied to an internal locking plate fixator, an external reader device, a sensor for measuring externally applied load and a laptop computer with processing software. By correlation between externally applied load and load measured in the implant, the elasticity of the osteosynthesis is calculated. The elasticity decreases with ongoing consolidation of a fracture or nonunion and is an appropriate parameter for the course of bone healing. At our centre, clinical application has been performed in 56 patients suffering nonunion or fracture of the femur.Objectives
Materials and Methods
The purpose of this study was to refine an accepted contaminated
rat femur defect model to result in an infection rate of approximately
50%. This threshold will allow examination of treatments aimed at
reducing infection in open fractures with less risk of type II error. Defects were created in the stablised femurs of anaethetised
rats, contaminated with Objectives
Methods
One commonly used rat fracture model for bone and mineral research
is a closed mid-shaft femur fracture as described by Bonnarens in
1984. Initially, this model was believed to create very reproducible
fractures. However, there have been frequent reports of comminution
and varying rates of complication. Given the importance of precise
anticipation of those characteristics in laboratory research, we
aimed to precisely estimate the rate of comminution, its importance and
its effect on the amount of soft callus created. Furthermore, we
aimed to precisely report the rate of complications such as death
and infection. We tested a rat model of femoral fracture on 84 rats based on
Bonnarens’ original description. We used a proximal approach with
trochanterotomy to insert the pin, a drop tower to create the fracture
and a high-resolution fluoroscopic imager to detect the comminution.
We weighed the soft callus on day seven and compared the soft callus
parameters with the comminution status.Objectives
Methods
Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury. Ectopic bone forms
around joints in characteristic patterns, causing pain and limiting
movement especially around the hip and elbow. Clinical sequelae
of neurogenic heterotopic ossification include urinary tract infection,
pressure injuries, pneumonia and poor hygiene, making early diagnosis
and treatment clinically compelling. However, diagnosis remains
difficult with more investigation needed. Our pathophysiological
understanding stems from mechanisms of basic bone formation enhanced
by evidence of systemic influences from circulating humor factors
and perhaps neurological ones. This increasing understanding guides
our implementation of current prophylaxis and treatment including
the use of non-steroidal anti-inflammatory drugs, bisphosphonates,
radiation therapy and surgery and, importantly, should direct future, more
effective ones.
To investigate the differences of open reduction and internal
fixation (ORIF) of complex AO Type C distal radius fractures between
two different models of a single implant type. A total of 136 patients who received either a 2.4 mm (n = 61)
or 3.5 mm (n = 75) distal radius locking compression plate (LCP
DR) using a volar approach were followed over two years. The main
outcome measurements included motion, grip strength, pain, and the
scores of Gartland and Werley, the Short-Form 36 (SF-36) and the
Disabilities of the Arm, Shoulder, and Hand (DASH). Differences
between the treatment groups were evaluated using regression analysis
and the likelihood ratio test with significance based on the Bonferroni
corrected p-value of <
0.003.Objectives
Methods