Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease. A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed.Aims
Methods
Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE).
Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up.Aims
Methods
The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size.Aims
Methods
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.Aims
Methods
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by
This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA). Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.Aims
Methods
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article:
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology.Aims
Methods
There is no consensus on the treatment of proximal humeral fractures. Hemiarthroplasty has been widely used in patients when non-surgical treatment is not possible. There is, despite extensive use, limited information about the long-term outcome. Our primary aim was to report ten-year patient-reported outcome after hemiarthroplasty for acute proximal humeral fractures. The secondary aims were to report the cumulative revision rate and risk factors for an inferior patient-reported outcome. We obtained data on 1,371 hemiarthroplasties for acute proximal humeral fractures from the Danish Shoulder Arthroplasty Registry between 2006 and 2010. Of these, 549 patients (40%) were alive and available for follow-up. The Western Ontario Osteoarthritis of the Shoulder (WOOS) questionnaire was sent to all patients at nine to 14 years after primary surgery. Revision rates were calculated using the Kaplan-Meier method. Risk factors for an inferior WOOS score were analyzed using the linear regression model.Aims
Methods
Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy.Aims
Methods
The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.Aims
Methods
The most frequent indication for revision surgery in total hip arthroplasty (THA) is aseptic loosening. Aseptic loosening is associated with polyethylene liner wear, and wear may be reduced by using vitamin E-doped liners. The primary objective of this study was to compare proximal femoral head penetration into the liner between a) two cross-linked polyethylene (XLPE) liners (vitamin E-doped (vE-PE)) versus standard XLPE liners, and b) two modular femoral head diameters (32 mm and 36 mm). Patients scheduled for a THA were randomized to receive a vE-PE or XLPE liner with a 32 mm or 36 mm metal head (four intervention groups in a 2 × 2 factorial design). Head penetration and acetabular component migration were measured using radiostereometric analysis at baseline, three, 12, 24, and 60 months postoperatively. The Harris Hip Score, University of California, Los Angeles (UCLA) Activity Score, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey questionnaire (SF-36) were assessed at baseline, three, 12, 36, and 60 months.Aims
Methods
To investigate the effect of polyethylene manufacturing characteristics and irradiation dose on the survival of cemented and reverse hybrid total hip arthroplasties (THAs). In this registry study, data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man (NJR) were linked with manufacturing data supplied by manufacturers. The primary endpoint was revision of any component. Cox proportional hazard regression was a primary analytic approach adjusting for competing risk of death, patient characteristics, head composition, and stem fixation.Aims
Methods
The Fassier Duval (FD) rod is a third-generation telescopic implant for children with osteogenesis imperfecta (OI). Threaded fixation enables proximal insertion without opening the knee or ankle joint. We have reviewed our combined two-centre experience with this implant. In total, 34 children with a mean age of five years (1 to 14) with severe OI have undergone rodding of 72 lower limb long bones (27 tibial, 45 femoral) for recurrent fractures with progressive deformity despite optimized bone health and bisphosphonate therapy. Data were collected prospectively, with 1.5 to 11 years follow-up.Aims
Methods
For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel. The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.Aims
Methods
Periprosthetic joint infection (PJI) is a serious complication
of total hip arthroplasty (THA). Different bearing surface materials
have different surface properties and it has been suggested that
the choice of bearing surface may influence the risk of PJI after
THA. The objective of this meta-analysis was to compare the rate
of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene
(CoP), and ceramic-on-ceramic (CoC) bearings. Electronic databases (Medline, Embase, Cochrane library, Web
of Science, and Cumulative Index of Nursing and Allied Health Literature)
were searched for comparative randomized and observational studies
that reported the incidence of PJI for different bearing surfaces.
Two investigators independently reviewed studies for eligibility, evaluated
risk of bias, and performed data extraction. Meta-analysis was performed
using the Mantel–Haenzel method and random-effects model in accordance
with methods of the Cochrane group.Aims
Patients and Methods
Objectives. Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen
The objective of this five-year prospective, blinded, randomised
controlled trial (RCT) was to compare femoral head penetration into
a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner
with penetration into a medium cross-linked polyethylene control
liner using radiostereometric analysis. Patients scheduled for total hip arthroplasty (THA) were randomised
to receive either the study E1 (32 patients) or the control ArComXL
polyethylene (35 patients). The median age (range) of the overall
cohort was 66 years (40 to 76).Aims
Patients and Methods
Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.Objectives
Methods
The leading indication for revision total hip
arthroplasty (THA) remains aseptic loosening owing to wear. The younger,
more active patients currently undergoing THA present unprecedented
demands on the bearings. Ceramic-on-ceramic (CoC) bearings have
consistently shown the lowest rates of wear. The recent advances,
especially involving alumina/zirconia composite ceramic, have led
to substantial improvements and good results Alumina/zirconia composite ceramics are extremely hard, scratch
resistant and biocompatible. They offer a low co-efficient of friction
and superior lubrication and lower rates of wear compared with other
bearings. The major disadvantage is the risk of fracture of the
ceramic. The new composite ceramic has reduced the risk of fracture
of the femoral head to 0.002%. The risk of fracture of the liner
is slightly higher (0.02%). Assuming that the components are introduced without impingement,
CoC bearings have major advantages over other bearings. Owing to
the superior hardness, they produce less third body wear and are
less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent
choice for young, active patients requiring THA. Cite this article:
We report the five-year outcome of a randomised
controlled trial which used radiostereometric analysis (RSA) to assess
the influence of surface oxidised zirconium (OxZr, Oxinium) on polyethylene
wear A total of 120 patients, 85 women and 35 men with a mean age
of 70 years (59 to 80) who were scheduled for primary cemented total
hip arthroplasty were randomly allocated to four study groups. Patients
were blinded to their group assignment and received either a conventional
polyethylene (CPE) or a highly cross-linked (HXL) acetabular component
of identical design. On the femoral side patients received a 28
mm head made of either cobalt-chromium (CoCr) or OxZr. The proximal head penetration (wear) was measured with repeated
RSA examinations over five years. Clinical outcome was measured
using the Harris hip score. There was no difference in polyethylene wear between the two
head materials when used with either of the two types of acetabular
component (p = 0.3 to 0.6). When comparing the two types of polyethylene
there was a significant difference in favour of HXLPE, regardless
of the head material used (p <
0.001). In conclusion, we found no advantage of OxZr over CoCr in terms
of polyethylene wear after five years of follow-up. Our findings
do not support laboratory results which have shown a reduced rate
of wear with OxZr. They do however add to the evidence on the better
resistance to wear of HXLPE over CPE. Cite this article:
Most published randomised controlled trials which
compare the rates of wear of conventional and cross-linked (XL) polyethylene
(PE) in total hip arthroplasty (THA) have described their use with
a cementless acetabular component. We conducted a prospective randomised study to assess the rates
of penetration of two distinct types of PE in otherwise identical
cemented all-PE acetabular components. A total of 100 consecutive patients for THA were randomised to
receive an acetabular component which had been either highly XL
then remelted or moderately XL then annealed. After a minimum of eight years follow-up, 38 hips in the XL group
and 30 hips in the annealed group had complete data (mean follow-up
of 9.1 years (7.6 to 10.7) and 8.7 years (7.2 to 10.2), respectively).
In the XL group, the steady state rate of penetration from one year
onwards was -0.0002 mm/year ( These results show that the yearly linear rate of femoral head
penetration can be significantly reduced by using a highly XLPE
cemented acetabular component. Cite this article:
Polyethylene wear debris can cause osteolysis
and the failure of total hip arthroplasty. We present the five-year
wear rates of a highly cross-linked polyethylene (X3) bearing surface
when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients.
Pain and activity scores were measured pre- and post-operatively.
Femoral head penetration was measured at two months, one year, two
years and at five years using validated edge-detecting software
(PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients
were available for study. The mean age of these patients was 59.08
years (42 to 73, the mean age of males (n = 34) was 59.15 years,
and females (n = 44) was 59.02 years). All patients had significant
improvement in their functional scores (p <
0.001). The steady
state two-dimensional linear wear rate was 0.109 mm/year. The steady
state volumetric wear rate was 29.61 mm3/year. No significant
correlation was found between rate of wear and age (p = 0.34), acetabular
component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in
X3 highly cross-linked polyethylene in conjunction with a 36 mm
ceramic femoral head. The linear wear rate was almost identical
to the osteolysis threshold of 0.1 mm/year recommended in the literature. Cite this article:
This review examines the future of total hip arthroplasty, aiming to avoid past mistakes
Excessive mechanical stress on synovial joints causes osteoarthritis
(OA) and results in the production of prostaglandin E2 (PGE2), a
key molecule in arthritis, by synovial fibroblasts. However, the
relationship between arthritis-related molecules and mechanical
stress is still unclear. The purpose of this study was to examine
the synovial fibroblast response to cyclic mechanical stress using
an Human synovial fibroblasts were cultured on collagen scaffolds
to produce three-dimensional constructs. A cyclic compressive loading
of 40 kPa at 0.5 Hz was applied to the constructs, with or without
the administration of a cyclooxygenase-2 (COX-2) selective inhibitor
or dexamethasone, and then the concentrations of PGE2, interleukin-1β (IL-1β),
tumour necrosis factor-α (TNF-α), IL-6, IL-8 and COX-2 were measured.Objective
Method
Lengthening of the conjoined tendon of the gastrocnemius
aponeurosis and soleus fascia is frequently used in the treatment
of equinus deformities in children and adults. The Vulpius procedure
as described in most orthopaedic texts is a division of the conjoined
tendon in the shape of an inverted V. However, transverse division
was also described by Vulpius and Stoffel, and has been reported
in some clinical studies. We studied the anatomy and biomechanics of transverse division
of the conjoined tendon in 12 human cadavers (24 legs). Transverse
division of the conjoined tendon resulted in predictable, controlled
lengthening of the gastrocsoleus muscle-tendon unit. The lengthening
achieved was dependent both on the level of the cut in the conjoined
tendon and division of the midline raphé. Division at a proximal
level resulted in a mean lengthening of 15.2 mm ( Cite this article:
Our objective in this article is to test the hypothesis that
type 2 diabetes mellitus (T2DM) is a factor in the onset and progression
of osteoarthritis, and to characterise the quality of the articular
cartilage in an appropriate rat model. T2DM rats were obtained from the UC Davis group and compared
with control Lewis rats. The diabetic rats were sacrificed at ages
from six to 12 months, while control rats were sacrificed at six
months only. Osteoarthritis severity was determined via histology
in four knee quadrants using the OARSI scoring guide. Immunohistochemical
staining was also performed as a secondary form of osteoarthritic
analysis.Objectives
Methods
This short contribution aims to explain how intervertebral disc ‘degeneration’ differs from normal ageing, and to suggest how mechanical loading and constitutional factors interact to cause disc degeneration and prolapse. We suggest that disagreement on these matters in medico-legal practice often arises from a misunderstanding of the nature of ‘soft-tissue injuries’.
We reviewed the literature on the currently available
choices of bearing surface in total hip replacement (THR). We present
a detailed description of the properties of articulating surfaces
review the understanding of the advantages and disadvantages of
existing bearing couples. Recent technological developments in the
field of polyethylene and ceramics have altered the risk of fracture
and the rate of wear, although the use of metal-on-metal bearings has
largely fallen out of favour, owing to concerns about reactions
to metal debris. As expected, all bearing surface combinations have
advantages and disadvantages. A patient-based approach is recommended,
balancing the risks of different options against an individual’s
functional demands. Cite this article:
The goals of this study were: 1) to determine if high-fat diet
(HFD) feeding in female mice would negatively impact biomechanical
and histologic consequences on the Achilles tendon and quadriceps
muscle; and 2) to investigate whether exercise and branched-chain
amino acid (BCAA) supplementation would affect these parameters
or attenuate any negative consequences resulting from HFD consumption. We examined the effects of 16 weeks of 60% HFD feeding, voluntary
exercise (free choice wheel running) and BCAA administration in
female C57BL/6 mice. The Achilles tendons and quadriceps muscles
were removed at the end of the experiment and assessed histologically
and biomechanically.Objectives
Methods
Between 1999 and 2001, 90 patients underwent
total hip replacement using the same uncemented acetabular and femoral
components with a 28 mm metallic femoral head but with prospective
randomisation of the acetabular liner to either Durasul highly cross-linked
polyethylene or nitrogen-sterilised Sulene polyethylene. We assessed
83 patients at a minimum follow-up of ten years. Linear penetration
of the femoral head was estimated at six weeks, six and 12 months
and annually thereafter, using the Dorr method, given the non-spherical
shape of the acetabular component. There was no loosening of any component; only one hip in the
Sulene group showed proximal femoral osteolysis. The mean penetration
of the femoral head at six weeks was 0.08 mm (0.02 to 0.15) for
the Durasul group and 0.16 mm (0.05 to 0.28) for the Sulene group
(p = 0.001). The mean yearly linear penetration was 64.8% lower
for the Durasul group at 0.05 mm/year ( Cite this article:
An 81-year-old woman presented with a fracture
in the left femur. She had well-fixed bilateral hip replacements
and had received long-term bisphosphonate treatment. Prolonged bisphosphonate
use has been recently linked with atypical subtrochanteric and diaphyseal
femoral fractures. While the current definition of an atypical fracture
of the femur excludes peri-prosthetic fractures, this case suggests
that they do occur and should be considered in patients with severe
osteopenia. Union of the fracture followed cessation of bisphosphonates
and treatment with teriparatide. Thus, this case calls into question
whether prophylactic intramedullary nailing is sufficient alone
to treat early or completed atypical femoral fractures.
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene. The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
We investigated the effect of mitomycin-C on the reduction of the formation of peritendinous fibrous adhesions after tendon repair. In 20 Wistar albino rats the tendo Achillis was cut and repaired using a modified Kessler technique. The rats were divided into two equal groups. In group 1, an injection of mitomycin-C was placed between the tendon and skin of the right leg. In group 2, an identical volume of sterile normal saline was injected on the left side in a similar fashion. All the rats received mitomycin-C or saline for four weeks starting from the day of operation. The animals were killed after 30 days. The formation of peritendinous fibrous tissue, the inflammatory reaction and tendon healing were evaluated. The tensile strength of the repaired tendons was measured biomechanically. Microscopic evidence of the formation of adhesions and inflammation was less in group 1. There was no significant difference in the tensile load required to rupture the repaired tendons in the two groups. Mitomycin-C may therefore provide a simple and inexpensive means of preventing of post-operative adhesions.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
This retrospective study evaluated the midterm clinical and radiographic outcomes of a second-generation total knee replacement system. In a multicentre consecutive series of 1512 patients, 1970 knees were treated with the PFC Sigma knee system (Depuy, Warsaw, Indiana). The patients were reviewed for functional outcome, and underwent independent radiographic evaluation at a mean follow-up of 7.3 years (5 to 10). A total of 40 knees (2%) required revision, 17 (0.9%) for infection. The incidence of osteolysis was 2.2%. The ten-year survival with revision for any cause other than infection as the endpoint was 97.2% (95% CI 95.4 to 99.1). The PFC Sigma knee system appears to provide excellent results in the medium term.
Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA.
Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.
The creep and wear behaviour of highly cross-linked polyethylene and standard polyethylene liners were examined in a prospective, double-blind randomised, controlled trial using radiostereometric analysis. We randomised 54 patients to receive hip replacements with either highly cross-linked polyethylene or standard liners and determined the three-dimensional penetration of the liners over three years. After three years the mean total penetration was 0.35 mm (SD 0.14) for the highly cross-linked polyethylene group and 0.45 mm (SD 0.19) for the standard group. The difference was statistically significant (p = 0.0184). From the pattern of penetration it was possible to discriminate creep from wear. Most (95%) of the creep occurred within six months of implantation and nearly all within the first year. There was no difference in the mean degree of creep between the two types of polyethylene (highly cross-linked polyethylene 0.26 mm, SD 0.17; standard 0.27 mm, SD 0.2; p = 0.83). There was, however, a significant difference (p = 0.012) in the mean wear rate (highly cross-linked polyethylene 0.03 mm/yr, SD 0.06; standard 0.07 mm/yr, SD 0.05). Creep and wear occurred in significantly different directions (p = 0.01); creep was predominantly proximal whereas wear was anterior, proximal and medial. We conclude that penetration in the first six months is creep-dominated, but after one year virtually all penetration is due to wear. Highly cross-linked polyethylene has a 60% lower rate of wear than standard polyethylene and therefore will probably perform better in the long term.
Treatment strategies for osteoarthritis most commonly involve the removal or replacement of damaged joint tissue. Relatively few treatments attempt to arrest, slow down or reverse the disease process. Such options include peri-articular osteotomy around the hip or knee, and treatment of femoro-acetabular impingement, where early intervention may potentially alter the natural history of the disease. A relatively small proportion of patients with osteoarthritis have a clear predisposing factor that is both suitable for modification and who present early enough for intervention to be deemed worthwhile. This paper reviews recent advances in our understanding of the pathology, imaging and progression of early osteoarthritis.
We prospectively examined the physical and imaging findings, including MRI, of 23 patients with spontaneous osteonecrosis of the knee after obtaining informed consent to acquire tissue specimens at surgery. There were four men and 19 women, with a mean age of 67.5 years (58 to 77). Plain radiographs were designated as stages 1, 2, 3 or 4 according to the classification of Koshino. Five knees were classified as stage 1, five as stage 2, seven as stage 3 and six as stage 4. The histological specimens were stained with haematoxylin and eosin and tetrachrome. In the early stages of the condition, a subchondral fracture was noted in the absence of any features of osteonecrosis, whereas in advanced stages, osteonecrotic lesions were confined to the area distal to the site of the fracture which showed impaired healing. In such cases, formation of cartilage and fibrous tissue, occurred indicating delayed or nonunion. These findings strongly suggest that the histopathology at each stage of spontaneous osteonecrosis is characterised by different types of repair reaction for subchondral fractures.
Ultra-high-molecular-weight polyethylene sterilised in the absence of air and highly cross-linked polyethylene have been used to avoid osteolysis and loosening in total hip replacement. Our prospective randomised study has assessed the results using two different polyethylenes associated with the same prosthetic design. We assessed 45 Allofit acetabular components with a Sulene-polyethylene liner of conventional polyethylene gamma sterilised with nitrogen and 45 Allofit acetabular components with a Durasul-polyethylene liner sterilised in ethylene oxide, both matched with an Alloclassic stem with a 28 mm modular femoral head. The prostheses were implanted between May 1999 and December 2001. The mean follow-up was for 66.3 months (60 to 92). The linear penetration of the femoral head was estimated at 6 weeks, at 6 and 12 months and annually thereafter from standardised digitised radiographs using image-analysis software. There was no loosening of any prosthetic component. There were no radiolucent lines or osteolysis. The mean rate of penetration calculated from regression analysis during the first five years was 38 μm/year (
Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation. The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity. Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined. The Endobutton-based method showed the highest failure load at 270 N ( The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.
We carried out a prospective randomised study designed to compare the penetration rate of acetabular polyethylene inserts of identical design but different levels of
Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically. The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material.
Arthritis of the hip in the young adult can be a disabling condition. Recent years have witnessed extensive research related to the management of this condition. This article reviews the current status with regard to aetiology, diagnosis and treatment of arthritis of the hip in the young adult.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
Patients with diabetes mellitus may develop plantar flexion contractures (equinus) which may increase forefoot pressure during walking. In order to determine the relationship between equinus and forefoot pressure, we measured forefoot pressure during walking in 27 adult diabetics with a mean age of 66.3 years ( Simple linear regression showed that the relationship between equinus and peak forefoot pressure was significant (p <
0.0471), but that only a small portion of the variance was accounted for (R2 = 0.149). This indicates that equinus has only a limited role in causing high forefoot pressure. Our findings suggest caution in undertaking of tendon-lengthening procedures to reduce peak forefoot plantar pressures in diabetic subjects until clearer indications are established.