Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article: Bone Joint J 2022;104-B(8):915–921


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims

Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD.

Methods

A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated. Cite this article: Bone Joint Res 2020;9(8):524–530


Bone & Joint Research
Vol. 9, Issue 8 | Pages 501 - 514
1 Aug 2020
Li X Yang Y Sun G Dai W Jie X Du Y Huang R Zhang J

Aims

Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method.

Methods

We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 301 - 309
1 Mar 2020
Keenan OJF Holland G Maempel JF Keating JF Scott CEH

Aims

Although knee osteoarthritis (OA) is diagnosed and monitored radiologically, actual full-thickness cartilage loss (FTCL) has rarely been correlated with radiological classification. This study aims to analyze which classification system correlates best with FTCL and to assess their reliability.

Methods

A prospective study of 300 consecutive patients undergoing unilateral total knee arthroplasty (TKA) for OA (mean age 69 years (44 to 91; standard deviation (SD) 9.5), 178 (59%) female). Two blinded examiners independently graded preoperative radiographs using five common systems: Kellgren-Lawrence (KL); International Knee Documentation Committee (IKDC); Fairbank; Brandt; and Ahlbäck. Interobserver agreement was assessed using the intraclass correlation coefficient (ICC). Intraoperatively, anterior cruciate ligament (ACL) status and the presence of FTCL in 16 regions of interest were recorded. Radiological classification and FTCL were correlated using the Spearman correlation coefficient.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 544 - 549
1 Nov 2019
Zheng W Liu C Lei M Han Y Zhou X Li C Sun S Ma X

Objectives

The objective of this study was to investigate the association of four single-nucleotide polymorphisms (SNPs) of the cannabinoid receptor 2 (CNR2) gene, gene-obesity interaction, and haplotype combination with osteoporosis (OP) susceptibility.

Methods

Chinese patients with OP were recruited between March 2011 and December 2015 from our hospital. In this study, a total of 1267 post-menopausal female patients (631 OP patients and 636 control patients) were selected. The mean age of all subjects was 69.2 years (sd 15.8). A generalized multifactor dimensionality reduction (GMDR) model and logistic regression model were used to examine the interaction between SNP and obesity on OP. For OP patient-control haplotype analyses, the SHEsis online haplotype analysis software (http://analysis.bio-x.cn/) was employed.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives

Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA.

Methods

We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim. Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Patients and Methods. Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results. We identified 1265 differentially methylated genes, of which 145 are associated with significant changes in gene expression, such as DLX5, NCOR2 and AXIN2 (all p-values of both DNA methylation and mRNA expression < 0.05). Pathway enrichment analysis identified 26 OA-associated pathways, such as mitogen-activated protein kinase (MAPK) signalling pathway (p = 6.25 × 10-4), phosphatidylinositol (PI) signalling system (p = 4.38 × 10-3), hypoxia-inducible factor 1 (HIF-1) signalling pathway (p = 8.63 × 10-3 pantothenate and coenzyme A (CoA) biosynthesis (p = 0.017), ErbB signalling pathway (p = 0.024), inositol phosphate (IP) metabolism (p = 0.025), and calcium signalling pathway (p = 0.032). Conclusion. We identified a group of genes and biological pathwayswhich were significantly different in both DNA methylation and mRNA expression profiles between patients with OA and controls. These results may provide new clues for clarifying the mechanisms involved in the development of OA. Cite this article: A. He, Y. Ning, Y. Wen, Y. Cai, K. Xu, Y. Cai, J. Han, L. Liu, Y. Du, X. Liang, P. Li, Q. Fan, J. Hao, X. Wang, X. Guo, T. Ma, F. Zhang. Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 2018;7:343–350. DOI: 10.1302/2046-3758.75.BJR-2017-0284.R1


Bone & Joint 360
Vol. 6, Issue 4 | Pages 34 - 37
1 Aug 2017


Bone & Joint 360
Vol. 6, Issue 4 | Pages 1 - 1
1 Aug 2017
Ollivere B


Bone & Joint Research
Vol. 6, Issue 7 | Pages 439 - 445
1 Jul 2017
Sekimoto T Ishii M Emi M Kurogi S Funamoto T Yonezawa Y Tajima T Sakamoto T Hamada H Chosa E

Objectives

We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin (ASPN) gene; therefore, the present study aimed to investigate whether the CNV of ASPN is involved in the pathogenesis of AD.

Methods

Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s t-test).


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 420 - 425
1 Mar 2014
Fahal AH Shaheen S Jones DHA

This article presents an overview of mycetoma and offers guidelines for orthopaedic surgeons who may be involved in the care of patients with this condition.

Cite this article: Bone Joint J 2014;96-B:420–5.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 305 - 313
1 Mar 2013
Ribbans WJ Collins M

The incidence of acute and chronic conditions of the tendo Achillis appear to be increasing. Causation is multifactorial but the role of inherited genetic elements and the influence of environmental factors altering gene expression are increasingly being recognised. Certain individuals’ tendons carry specific variations of genetic sequence that may make them more susceptible to injury. Alterations in the structure or relative amounts of the components of tendon and fine control of activity within the extracellular matrix affect the response of the tendon to loading with failure in certain cases.

This review summarises present knowledge of the influence of genetic patterns on the pathology of the tendo Achillis, with a focus on the possible biological mechanisms by which genetic factors are involved in the aetiology of tendon pathology. Finally, we assess potential future developments with both the opportunities and risks that they may carry.

Cite this article: Bone Joint J 2013;95-B:305–13.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1193 - 1201
1 Sep 2012
Hamilton HW Jamieson J

It is probable that both genetic and environmental factors play some part in the aetiology of most cases of degenerative hip disease. Geneticists have identified some single gene disorders of the hip, but have had difficulty in identifying the genetics of many of the common causes of degenerative hip disease. The heterogeneity of the phenotypes studied is part of the problem. A detailed classification of phenotypes is proposed. This study is based on careful documentation of 2003 consecutive total hip replacements performed by a single surgeon between 1972 and 2000. The concept that developmental problems may initiate degenerative hip disease is supported. The influences of gender, age and body mass index are outlined. Biomechanical explanations for some of the radiological appearances encountered are suggested. The body weight lever, which is larger than the abductor lever, causes the abductor power to be more important than body weight. The possibility that a deficiency in joint lubrication is a cause of degenerative hip disease is discussed. Identifying the phenotypes may help geneticists to identify genes responsible for degenerative hip disease, and eventually lead to a definitive classification.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 374 - 376
1 Mar 2006
Engell V Damborg F Andersen M Kyvik KO Thomsen K

The aetiology of congenital club foot is unclear. Although studies on populations, families and twins suggest a genetic component, the mode of inheritance does not comply with distinctive patterns.

The Odense-based Danish Twin Registry contains data on all 73 000 twin pairs born in Denmark over the last 130 years. In 2002 all 46 418 twins born between 1931 and 1982 received a 17-page questionnaire, one question of which was ‘Were you born with club foot?’ A total of 94 twins answered ‘Yes’, giving an overall self-reported prevalence of congenital club foot of 0.0027 (95% confidence interval (CI) 0.0022 to 0.0034). We identified 55 complete twin pairs, representing 12 monozygotic, 22 dizygotic same sex (DZss), 18 dizygotic other sex (DZos) and three unclassified. Two monozygotic and 2 DZss pairs were concordant. The pairwise concordance was 0.17 (95% CI 0.02 to 0.48) for monozygotic, 0.09 (95% CI 0.01 to 0.32) for DZss and 0.05 (95% CI 0.006 to 0.18) for all dizygotic (DZtot) twins.

We have found evidence of a genetic component in congenital club foot, although non-genetic factors must play a predominant role.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 295 - 297
1 Mar 2006
Pharoah POD


The Journal of Bone & Joint Surgery British Volume
Vol. 34-B, Issue 4 | Pages 646 - 698
1 Nov 1952
Duraiswami PK

1 . The magnitude of the problem of congenital anomalies becomes evident when one takes into consideration the fact that they cause the death of approximately one quarter of the human race either before or shortly after birth, and handicap an appreciable proportion of the survivors throughout their lives. Further, a significant percentage of infants judged to be normal at birth are found in later life to suffer from "disguised" anomalies of the skeleton and soft tissues. Though the study of genetic factors leading to congenital defects has attracted a great deal of attention during the last few decades, the importance of environmental causes of human malformations has received relatively less emphasis. The association of congenital anomalies such as cataract and cardiac septal defects with maternal intercurrent infection of rubella during the early months of pregnancy demonstrates clearly that changes in the germplasm cannot always be invoked as the cause of developmental abnormalities. Congenital malformations that are sometimes genetically determined, such as microphthalmos, cleft palate, and certain skeletal abnormalities, can be caused in the offspring not only by maternal nutritional deficiencies and x-radiation but also, at least in some animals, such as chickens, rats and rabbits, by the introduction of certain substances like insulin into the environment of the embryo during its development. 2. Since very little is known of the detailed histology of the early human embryo, the histological examination of cases of perverted growth is mainly limited to aborted foetuses which, unfortunately, tend to present varying degrees of post-mortem degeneration before accurate histological methods can be applied. It is exactly in this field that animal experiments can offer valuable help. According to Mall and other embryologists the pathological changes that take place in human foetuses and those obtained experimentally in animals are not merely "analogous or similar but identical.". 3. An attempt has been made to review, in some detail, the more important work which has been carried out on experimental teratogenesis, on the epidemiological implications of developmental arrests in humans, and on foetal abnormalities associated with maternal metabolic and hormonal disorders during pregnancy. 4. The technique employed for injection of insulin into the egg yolk has been described. Methods used for the estimation of blood sugar in chick embryos at various stages after injection of insulin and special histochemical techniques for localising polysaccharides in cartilage have been outlined. 5. A few salient experimental results have been tabulated, and some of the insulin-induced abnormalities have been illustrated. 6. The possible mechanism of action of insulin in the causation of the various developmental anomalies has been discussed. Broadly speaking, insulin seems to affect primarily the part or tissue which is in the most active stage of growth or differentiation at the time of the injection. Within the range of 0·05 to 6 units of insulin employed, the incidence, severity and distribution of the deformities appear to increase with the dose of the hormone. It has been observed that the hypoglycaemia caused by insulin injection is not counteracted till about the twelfth day of incubation, presumably because of excessive accumulation of glycogen in the yolk-sac membrane immediately after the injection, and because of lack of glycogen storage in the embryonic liver and the absence of active secretion in the endocrine glands concerned with the carbohydrate metabolism of the embryo. It has been suggested that this unchecked hypoglycaemia may deprive the mesenchyme, pre-cartilage and cartilage of glycogen and mucopolysaccharides (chondroiten-sulphuric acid complexes), depending on the time of injection and the dose of insulin, and thus not only give rise to a variety of single and multiple deformities in the cartilaginous skeleton but also interfere with the normal endochondral ossification, resulting in a generalised developmental disturbance of bone resembling osteogenesis imperfecta in the human. 7. Insulin-induced abnormalities can be prevented to a remarkable extent by injecting nicotinamide and riboflavin into eggs along with insulin. 8. The question of the practical application of the knowledge gained from experimental observations on insulin-induced developmental abnormalities in explaining the possible causation of congenital anomalies in humans by genetic and environmental teratogenic factors, has been discussed. It is suggested that the orderly progression from the mesenchymatous condensation to cartilage, and then through calcified cartilage to bone, may be disturbed by these teratogenic factors at critical phases during the development of the embryo, and a variety of single and multiple skeletal deformities may thus be induced. 9. A plea is made for routine pathological and radiological examination of aborted foetuses and stillborn infants more or less on the lines followed for experimentally induced deformities with a view to applying the knowledge gained from animal experiments to a better understanding of the etiology and pathology of human congenital anomalies. 10. As regards the possible prevention of these deformities, it is not always easy to offer sound eugenic advice in the cases of congenital malformations determined partly or completely by genetic factors, for two important reasons. First, it is often difficult to distinguish between genetically determined congenital anomalies and their phenocopies. Secondly, genetically determined developmental defects sometimes show surprisingly variable expressivity and penetrance. For the conditions in which both genetic and environmental factors are involved, the most profitable immediate line of attack would be on the environmental factors. A relatively simpler problem is presented by the malformations which are, for all practical purposes, entirely caused by environmental factors. Measures to prevent congenital anomalies caused by prenatal rubella, such as exposure of girls to the disease during childhood and protection of pregnant women during the early stages of pregnancy by immune serum, are under active consideration. 11 . Further energetic investigation of the causes of permaturity, stillbirths, monstrosities and congenital malformations is urgently needed, before embarking on a successful programme for prevention. "The day of successful prophylaxis is not yet, but it is much nearer than seemed possible a few years ago."