Cartilage repair in terms of replacement, or
regeneration of damaged or diseased articular cartilage with functional tissue,
is the ‘holy grail’ of joint surgery. A wide spectrum of strategies
for cartilage repair currently exists and several of these techniques
have been reported to be associated with successful clinical outcomes
for appropriately selected indications. However, based on respective
advantages, disadvantages, and limitations, no single strategy, or
even combination of strategies, provides surgeons with viable options
for attaining successful long-term outcomes in the majority of patients.
As such, development of novel techniques and optimisation of current techniques
need to be, and are, the focus of a great deal of research from
the basic science level to clinical trials. Translational research
that bridges scientific discoveries to clinical application involves
the use of animal models in order to assess safety and efficacy
for regulatory approval for human use. This review article provides
an overview of animal models for cartilage repair. Cite this article:
The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.Objectives
Methods
Osteoarthritis (OA) is an important cause of
pain, disability and economic loss in humans, and is similarly important in
the horse. Recent knowledge on post-traumatic OA has suggested opportunities
for early intervention, but it is difficult to identify the appropriate
time of these interventions. The horse provides two useful mechanisms
to answer these questions: 1) extensive experience with clinical
OA in horses; and 2) use of a consistently predictable model of
OA that can help study early pathobiological events, define targets
for therapeutic intervention and then test these putative therapies.
This paper summarises the syndromes of clinical OA in horses including
pathogenesis, diagnosis and treatment, and details controlled studies
of various treatment options using an equine model of clinical OA.
Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.
The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.Objectives
Methods
The August 2014 Foot &
Ankle Roundup360 looks at: calcaneotibial nail in ankle fractures; reamer irrigator aspirator for ankle fusion; periprosthetic bone infection; infection in ankle fixation; cheap and cheerful OK in MTP fusion plates; sliding fibular graft for peroneal tendon pathology and fusion for failed ankle replacement.
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.
The repair of chondral lesions associated with
femoroacetabular impingement requires specific treatment in addition
to that of the impingement. In this single-centre retrospective
analysis of a consecutive series of patients we compared treatment
with microfracture (MFx) with a technique of enhanced microfracture
autologous matrix-induced chondrogenesis (AMIC). Acetabular grade III and IV chondral lesions measuring between
2 cm2 and 8 cm2 in 147 patients were treated
by MFx in 77 and AMIC in 70. The outcome was assessed using the
modified Harris hip score at six months and one, two, three, four
and five years post-operatively. The outcome in both groups was
significantly improved at six months and one year post-operatively.
During the subsequent four years the outcome in the MFx group slowly deteriorated,
whereas that in the AMIC group remained stable. Six patients in
the MFx group subsequently required total hip arthroplasty, compared
with none in the AMIC group We conclude that the short-term clinical outcome improves in
patients with acetabular chondral damage following both MFx and
AMIC. However, the AMIC group had better and more durable improvement,
particularly in patients with large (≥ 4 cm2) lesions. Cite this article: