This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency.Aims
Methods
Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability. Cite this article:
The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow. We developed the Shanghai Prediction Model for Elbow Stiffness Surgical Outcome (SPESSO) based on a dataset of 551 patients who underwent open arthrolysis of the elbow in four institutions. Demographic and clinical characteristics were collected from medical records. The least absolute shrinkage and selection operator regression model was used to optimize the selection of relevant features. Multivariable logistic regression analysis was used to build the SPESSO. Its prediction performance was evaluated using the concordance index (C-index) and a calibration graph. Internal validation was conducted using bootstrapping validation.Aims
Methods
We report a case of systemic Penicillium marneffei infection in a
Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.Aims
Methods
1. Five new cases of Apert's syndrome are presented, and the general features of the disease are discussed and correlated with these. The bony changes in the elbow and the delay in ossification are striking. The incidence in Singapore seems to be higher than elsewhere and the patients are all
1. The cases of six
There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining.Aims
Methods
This study aims to estimate economic outcomes associated with 30-day deep surgical site infection (SSI) from closed surgical wounds in patients with lower limb fractures following major trauma. Data from the Wound Healing in Surgery for Trauma (WHiST) trial, which collected outcomes from 1,547 adult participants using self-completed questionnaires over a six-month period following major trauma, was used as the basis of this empirical investigation. Associations between deep SSI and NHS and personal social services (PSS) costs (£, 2017 to 2018 prices), and between deep SSI and quality-adjusted life years (QALYs), were estimated using descriptive and multivariable analyses. Sensitivity analyses assessed the impact of uncertainty surrounding components of the economic analyses.Aims
Methods
Routine examination for spinal deformity as part of a school health screening programme was introduced in Singapore in 1981. The three different ethnic groups included in the study provided figures for the prevalence of idiopathic scoliosis in an Asian population. A three-tier system of examination was used and a total of 110744 children in three age groups were studied. In those aged 6 to 7 years the prevalence was 0.12%. The prevalence in those aged 11 to 12 years was 1.7% for girls and 0.4% for boys, a ratio of 3.2 to 1. In girls aged 16 to 17 years the prevalence was 3.1%. In the latter two age groups there was a significantly higher prevalence in
The total plasma alkaline phosphatase level has long been recognised as an indicator of osteoblastic activity, but lack of specificity makes it an insensitive index of the progress of disease and the response to treatment. Selective precipitation by wheatgerm lectin allows measurement of the plasma bone-specific alkaline phosphatase. We measured the plasma levels of this isoenzyme in 170 normal
The Gamma nail was introduced for the treatment of peritrochanteric fractures with the theoretical advantage of a load-sharing femoral component which could be implanted by a closed procedure. We report a randomised prospective study of 186 fractures treated by either the Gamma nail or a dynamic hip screw. Gamma nails were implanted with significantly shorter screening times, smaller incisions, and less intraoperative bleeding. The Gamma nail group had a shorter convalescence and earlier full weight-bearing, but there was no significant difference in mortality within six months, postoperative mobility, or hip function at review. More intra-operative complications were recorded in the Gamma nail group, mainly due to the mismatching of the femoral component of the nail to the small femurs of
We carried out 12 arthroscopies of the first metatarsophalangeal (MTP) joint in 11 patients over a five-year period. Their mean age was 30 years (15 to 58) and the mean duration of symptoms before surgery was eight months (1 to 24). Six patients had an injury to the joint; all had swelling and tenderness with a reduced range of movement. In six patients, radiographs revealed no abnormality. Under general anaesthesia with a tourniquet the hallux is suspended by a large
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
Circular RNA (circRNA) S-phase cyclin A-associated protein in the endoplasmic reticulum (ER) (circSCAPER, ID: hsa_circ_0104595) has been found to be highly expressed in osteoarthritis (OA) patients and has been associated with the severity of OA. Hence, the role and mechanisms underlying circSCAPER in OA were investigated in this study. In vitro cultured human normal chondrocyte C28/I2 was exposed to interleukin (IL)-1β to mimic the microenvironment of OA. The expression of circSCAPER, microRNA (miR)-140-3p, and enhancer of zeste homolog 2 (EZH2) was detected using quantitative real-time polymerase chain reaction and Western blot assays. The extracellular matrix (ECM) degradation, proliferation, and apoptosis of chondrocytes were determined using Western blot, cell counting kit-8, and flow cytometry assays. Targeted relationships were predicted by bioinformatic analysis and verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The levels of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related protein were detected using Western blot assays.Aims
Methods
Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation.Aims
Methods
The COVID-19 pandemic drastically affected elective orthopaedic services globally as routine orthopaedic activity was largely halted to combat this global threat. Our institution (University College London Hospital, UK) previously showed that during the first peak, a large proportion of patients were hesitant to be listed for their elective lower limb procedure. The aim of this study is to assess if there is a patient perception change towards having elective surgery now that we have passed the peak of the second wave of the pandemic. This is a prospective study of 100 patients who were on the waiting list of a single surgeon for an elective hip or knee procedure. Baseline characteristics including age, American Society of Anesthesiologists (ASA) grade, COVID-19 risk, procedure type, and admission type were recorded. The primary outcome was patient consent to continue with their scheduled surgical procedure. Subgroup analysis was also conducted to define if any specific patient factors influenced decision to continue with surgeryAims
Methods
A typical pattern of blood loss associated with total hip arthroplasty (THA) is 200 ml intraoperatively and 1.3 l in the first 48 postoperative hours. Tranexamic acid (TXA) is most commonly given as a single preoperative dose only and is often withheld from patients with a history of thromboembolic disease as they are perceived to be “high-risk” with respect to postoperative venous thromboembolism (VTE). The TRanexamic ACid for 24 hours trial (TRAC-24) aimed to identify if an additional 24-hour postoperative TXA regime could further reduce blood loss beyond a once-only dose at the time of surgery, without excluding these high-risk patients. TRAC-24 was a prospective, phase IV, single centre, open label, parallel group, randomized controlled trial (RCT) involving patients undergoing primary unilateral elective THA. The primary outcome measure was the indirect calculated blood loss (IBL) at 48 hours. The patients were randomized into three groups. Group 1 received 1 g intravenous (IV) TXA at the time of surgery and an additional oral regime for 24 hours postoperatively, group 2 only received the intraoperative dose, and group 3 did not receive any TXA.Aims
Methods