We describe a new method for the accurate measurement of the angle of anteversion of an acetabular
In total hip replacement, orientation of the
The aims of this study were to examine the repeatability of measurements of bone mineral density (BMD) around a cemented polyethylene Charnley acetabular component using dual-energy x-ray absorptiometry and to determine the longitudinal pattern of change in BMD during the first 24 months after surgery. The precision of measurements of BMD in 19 subjects ranged from 7.7% to 10.8% between regions, using a four-region-of-interest model. A longitudinal study of 27 patients demonstrated a transient decrease in net pelvic BMD during the first 12 months, which recovered to baseline at 24 months. The BMD in the region medial to the dome of the component reduced by between 7% and 10% during the first three months, but recovered to approximately baseline values by two years. Changes in BMD in the pelvis around cemented acetabular components may be measured using dual-energy x-ray absorptiometry. Bone loss after insertion of a cemented Charnley acetabular component is small, transient and occurs mainly at the medial wall of the acetabulum. After two years, bone mass returns to baseline values, with a pattern suggesting a uniform transmission of load to the acetabulum.
We carried out a clinical and radiological review of 103 cementless primary hip arthroplasties with a tapered rectangular grit-blasted titanium press-fit femoral component and a threaded conical titanium acetabular component at a mean follow-up of 14.4 years (10.2 to 17.1). The mean Harris hip score at the last follow-up was 89.2 (32 to 100). No early loosening and no fracture of the implant were found. One patient needed revision surgery because of a late deep infection. In 11 hips (10.7%), the reason for revision was progressive wear of the polyethylene liner. Exchange of the acetabular component because of aseptic loosening without detectable liner wear was carried out in three hips (2.9%). After 15 years the survivorship with aseptic loosening as the definition for failure was 95.6% for the acetabular component and 100% for the femoral component.
Between 1995 and 1997 we undertook 40 bipolar hip arthroplasties in 35 patients with dysplastic osteoarthritis. The steep and shallow acetabulum was excavated and the bipolar socket was placed high with an adjustment of leg-length. At follow-up of between five and seven years, there were 19 excellent, 16 good and five fair results according to the scoring system of Merle d’Aubigné and Postel. The mean radiographic superior migration of the bipolar socket was 2.1 mm (0 to 10). Osteolysis was noted in three hips within three years of the operation. Abduction on weight-bearing was recorded in 24 hips and the bipolar system was found to be functioning predominantly between the inner bearing and the metal femoral head in 20.
We studied wear in the ultra-high-molecular-weight polyethylene offset bore socket in 54 hips which had had Charnley low-friction arthroplasty. At an average follow-up of 8.1 years, the mean penetration rate was 0.04 mm per year. Correlation between the depth of socket penetration and the incidence of socket migration was confirmed, but socket migration occurred with lower penetration than had been previously reported.
Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular
Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene
Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal
Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral