Advertisement for orthosearch.org.uk
Results 61 - 80 of 777
Results per page:
Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 508 - 514
1 May 2024
Maximen J Jeantet R Violas P

Aims. The aim of this study is to evaluate the surgical treatment with the best healing rate for patients with proximal femoral unicameral bone cysts (UBCs) after initial surgery, and to determine which procedure has the lowest adverse event burden during follow-up. Methods. This multicentre retrospective study was conducted in 20 tertiary paediatric hospitals in France, Belgium, and Switzerland, and included patients aged < 16 years admitted for UBC treatment in the proximal femur from January 1995 to December 2017. UBCs were divided into seven groups based on the index treatment, which included elastic stable intramedullary nail (ESIN) insertion with or without percutaneous injection or grafting, percutaneous injection alone, curettage and grafting alone, and insertion of other orthopaedic hardware with or without curettage. Results. A total of 201 patients were included in the study. The mean age at diagnosis was 8.7 years (SD 3.9); 77% (n = 156) were male. The mean follow-up was 9.4 years (SD 3.9). ESIN insertion without complementary procedure had a 67% UBC healing rate after the first operation (vs 30% with percutaneous injection alone (p = 0.027), 43% with curettage and grafting (p = 0.064), and 21% with insertion of other hardware combined with curettage (p < 0.001) or 36% alone (p = 0.014)). ESIN insertion with percutaneous injection presented a 79% healing rate, higher than percutaneous injection alone (p = 0.017), curettage and grafting (p = 0.028), and insertion of other hardware combined with curettage (p < 0.001) or alone (p = 0.014). Patients who underwent ESIN insertion with curettage had a 53% healing rate, higher than insertion of other hardware combined with curettage (p = 0.009). The overall rate of postoperative complications was 25% and did not differ between groups (p = 0.228). A total of 32 limb length discrepancies were identified. Conclusion. ESIN insertion, either alone or combined with percutaneous injection or curettage and grafting, may offer higher healing rates than other operative procedures. Limb length discrepancy remains a major concern, and might be partly explained by the cyst’s location and the consequence of surgery. Therefore, providing information about this risk is crucial. Cite this article: Bone Joint J 2024;106-B(5):508–514


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims. This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. Methods. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018. Results. Of the surviving 30 patients (34 THAs), there were four periprosthetic fractures: one underwent femoral revision after 21 years, two had surgical fixation as the stem was deemed stable, and one was treated nonoperatively due to the patient’s comorbidities. The periprosthetic fracture patients showed radiological evidence of change in bone stock around the femoral stem, which may have contributed to the fractures; this was reflected in change of the canal flare index at the proximal femur. Two patients (two hips) were lost to follow-up. Using aseptic loosening as the endpoint, 16 patients (18 hips; 48%) needed acetabular revision. None of the femoral components were revised for aseptic loosening, demonstrating 100% survival. The estimate of the cumulative proportion surviving for revisions due to any cause was 0.97 (standard error 0.03). Conclusion. In young patients with high demands, the Furlong HAC-coated femoral component gives excellent long-term results. Cite this article: Bone Jt Open 2024;5(4):286–293


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Methods. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m. 2. (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds. Results. Mean acetabular subsidence from baseline to 24 months was 0.087 mm (SD 0.152), below the critical threshold of 0.2 mm (p = 0.005). Mean femoral subsidence from baseline to 24 months was -0.002 mm (SD 0.194), below the published reference of 0.5 mm (p < 0.001). There was significant improvement in patient-reported outcome measures at 24 months with good to excellent results. Conclusion. RSA analysis demonstrates excellent fixation with a predicted low risk of revision at ten years of this novel reverse total hip system. Clinical outcomes were consistent with safe and effective hip replacement prostheses. Cite this article: Bone Jt Open 2023;4(5):385–392


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims. The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. Methods. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores. Results. Of the 58 patients (62 hips), two (two hips) presented with dislocation or reoperation, and Kaplan-Meier analysis indicated a five-year survival rate of 96.7% (95% CI 92.4 to 100). Mean stem anteversion was 35.2° (SD 18.2°) for the Taperloc stem and 29.8° (SD 7.9°) for the Wagner Cone stem; mean reduction from Taperloc to Wagner Cone was 5.4° (SD 18.8°). Overall, 55 hips (52 patients) were simulated, and the prevalence of prosthetic impingement was lower for the Wagner Cone (5.5%, 3/55) compared with the Taperloc (20.0%, 11/55) stem, with an odds ratio of 0.20 (p = 0.038). Among the 33 respondents to the postal survey (36 hips), the mean scores were VAS pain 10.9, VAS satisfaction 86.9, and OHS 44.7. A multivariable analysis revealed that reduction of stem anteversion from Taperloc to Wagner Cone was more favourable for VAS pain (p = 0.029) and VAS satisfaction (p = 0.002). Conclusion. The mid-term survival rate for THA using the Wagner Cone stem was high, which may be supported by a reduction in prosthetic impingement. The reduction in excessive stem anteversion by using a tapered cone stem was associated with reduced pain and increased patient satisfaction. Cite this article: Bone Jt Open 2024;5(10):858–867


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 864 - 871
1 Aug 2023
Tyas B Marsh M de Steiger R Lorimer M Petheram TG Inman DS Reed MR Jameson SS

Aims. Several different designs of hemiarthroplasty are used to treat intracapsular fractures of the proximal femur, with large variations in costs. No clinical benefit of modular over monoblock designs has been reported in the literature. Long-term data are lacking. The aim of this study was to report the ten-year implant survival of commonly used designs of hemiarthroplasty. Methods. Patients recorded by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) between 1 September 1999 and 31 December 2020 who underwent hemiarthroplasty for the treatment of a hip fracture with the following implants were included: a cemented monoblock Exeter Trauma Stem (ETS), cemented Exeter V40 with a bipolar head, a monoblock Thompsons prosthesis (Cobalt/Chromium or Titanium), and an Exeter V40 with a Unitrax head. Overall and age-defined cumulative revision rates were compared over the ten years following surgery. Results. A total of 41,949 hemiarthroplasties were included. Exeter V40 with a Unitrax head was the most commonly used (n = 20,707, 49.4%). The overall rate of revision was small. A total of 28,201 patients (67.2%) were aged > 80 years. There were no significant differences in revision rates across all designs of hemiarthroplasty in patients of this age at any time. The revision rates for all designs were < 3.5%, three years postoperatively. At subsequent times the ETS and Exeter V40 with a bipolar head performed well in all age groups. The unadjusted ten-year mortality rate for the whole cohort was 82.2%. Conclusion. There was no difference in implant survival between all the designs of hemiarthroplasty in the first three years following surgery, supporting the selection of a cost-effective design of hemiarthroplasty for most patients with an intracapsular fracture of the hip, as determined by local availability and costs. Beyond this, the ETS and Exeter bipolar designs performed well in all age groups. Cite this article: Bone Joint J 2023;105-B(8):864–871


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims. Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. Methods. Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. Results. Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. Conclusion. We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611–618


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1736 - 1741
1 Nov 2021
Tolk JJ Eastwood DM Hashemi-Nejad A

Aims. Perthes’ disease (PD) often results in femoral head deformity and leg length discrepancy (LLD). Our objective was to analyze femoral morphology in PD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalization on proximal and subtrochanteric femoral lengths. Methods. All patients treated for PD in our institution between January 2013 and June 2020 were reviewed retrospectively. Patients with unilateral PD, LLD of ≥ 5 mm, and long-leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD), and subtrochanteric femoral length were compared between PD side and the unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis. Results. Overall, 79 patients were included, of whom 21 underwent contralateral epiphysiodesis for leg length correction. In the complete cohort, the mean LLD was 1.8 cm (95% confidence interval (CI) 1.5 to 2.0), mean ATD difference was 1.8 cm (95% CI -2.1 to -1.9), and mean subtrochanteric difference was -0.2 cm (95% CI -0.4 to 0.1). In the epiphysiodesis group, the mean LLD before epiphysiodesis was 2.7 cm (95% CI 1.3 to 3.4) and 1.3 cm (95% CI -0.5 to 3.8) at skeletal maturity. In the nonepiphysiodesis group the mean LLD was 2.0 cm (95% CI 0.5 to 5.1; p = 0.016). The subtrochanteric region on the PD side was significantly longer at skeletal maturity in the epiphysiodesis group compared to the nonepiphysiodesis group (-1.0 cm (95% CI -2.4 to 0.6) vs 0.1 cm (95% CI -1.0 to 2.1); p < 0.001). Conclusion. This study demonstrates that LLD after PD originates from the proximal segment only. In patients who had contralateral epiphysiodesis to balance leg length, this is achieved by creating a difference in subtrochanteric length. Arthroplasty surgeons need to be aware that shortening of the proximal femur segment in PD patients may be misleading, as the ipsilateral subtrochanteric length in these patients can be longer. Therefore, we strongly advise long-leg standing films for THA planning in PD patients in order to avoid inadvertently lengthening the limb. Cite this article: Bone Joint J 2021;103-B(11):1736–1741


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 193 - 199
1 Feb 2022
Wang Q Wang H A G Xiao T Kang P

Aims. This study aimed to use intraoperative free electromyography to examine how the placement of a retractor at different positions along the anterior acetabular wall may affect the femoral nerve during total hip arthroplasty (THA) when undertaken using the direct anterior approach (THA-DAA). Methods. Intraoperative free electromyography was performed during primary THA-DAA in 82 patients (94 hips). The highest position of the anterior acetabular wall was defined as the “12 o’clock” position (middle position) when the patient was in supine position. After exposure of the acetabulum, a retractor was sequentially placed at the ten, 11, 12, one, and two o’clock positions (right hip; from superior to inferior positions). Action potentials in the femoral nerve were monitored with each placement, and the incidence of positive reactions (defined as explosive, frequent, or continuous action potentials, indicating that the nerve was being compressed) were recorded as the primary outcome. Secondary outcomes included the incidence of positive reactions caused by removing the femoral head, and by placing a retractor during femoral exposure; and the incidence of femoral nerve palsy, as detected using manual testing of the strength of the quadriceps muscle. Results. Positive reactions were significantly less frequent when the retractor was placed at the ten (15/94; 16.0%), 11 (12/94; 12.8%), or 12 o’clock positions (19/94; 20.2%), than at the one (37/94; 39.4%) or two o’clock positions (39/94; 41.5%) (p < 0.050). Positive reactions also occurred when the femoral head was removed (28/94; 29.8%), and when a retractor was placed around the proximal femur (34/94; 36.2%) or medial femur (27/94; 28.7%) during femoral exposure. After surgery, no patient had reduced strength in the quadriceps muscle. Conclusion. Placing the anterior acetabular retractor at the one or two o’clock positions (right hip; inferior positions) during THA-DAA can increase the rate of electromyographic signal changes in the femoral nerve. Thus, placing a retractor in these positions may increased the risk of the development of a femoral nerve palsy. Cite this article: Bone Joint J 2022;104-B(2):193–199


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 839 - 844
1 Jul 2018
Ollivier M Laumonerie P LiArno S Faizan A Cavaignac E Argenson J

Aims. In patients where the proximal femur shows gross deformity due to degenerative changes or fracture, the contralateral femur is often used to perform preoperative templating for hip arthroplasty. However, femurs may not be symmetrical: the aim of this study was to determine the degree of variation between hips in healthy individuals and to determine whether it is affected by demographic parameters. Materials and Methods. CT-scan based modelling was used to examine the pelvis and bilateral femurs of 345 patients (211 males, 134 women; mean age 62 years (standard deviation (. sd). 17), mean body mass index 27 kg/m. 2. (. sd. 5)) representing a range of ethnicities. The femoral neck-shaft angle (NSA), femoral offset (FO), femoral neck version (FNV), femoral length (FL), femoral canal flare index (fCFI), and femoral head radius (FHr) were then determined for each patient. All measurements were constructed using algorithm-calculated landmarks, resulting in reproducible and consistent constructs for each specimen. We then analyzed femoral symmetry based on absolute differences (AD) and percentage asymmetry (%AS) following a previously validated method. Results. We found an asymmetry > 2% for NSA (mean AD 2.9°, mean %AS 2.3; p = 0.03), FO (AD 3.8 mm, %AS 9.1 ; p = 0.01), FNV (AD 5.1°, %AS 46.7 ; p = 0.001) and fCFI (AD 0.2 mm, %AS 5.4 ; p = 0.7). Significant relationships were found for AD regarding NSA and ethnicity (p = 0.037), FL and height (R. 2.  = 0.22), and fCFI and gender (R. 2.  = 0.34). Conclusion. Our data confirm the presence of asymmetry of proximal femurs, which is mostly independent of demographic parameters. In cases where contralateral templating is used, such asymmetry may lead to inaccurate anatomical restoration of the hip if the templated sizes are routinely implanted. However, the clinical impact cannot be determined from our investigation. Cite this article: Bone Joint J 2018;100-B:839–44


Bone & Joint Research
Vol. 2, Issue 10 | Pages 210 - 213
1 Oct 2013
Griffin XL McArthur J Achten J Parsons N Costa ML

Fractures of the proximal femur are one of the greatest challenges facing the medical community, constituting a heavy socioeconomic burden worldwide. Controversy exists regarding the optimal treatment for independent patients with displaced intracapsular fractures of the proximal femur. The recognised alternatives are hemiarthroplasty and total hip replacement. At present there is no established standard of care, with both types of arthroplasty being used in many centres. The principal advantages of total hip replacement are a functional benefit over hemiarthroplasty and a reduced risk of revision surgery. The principal criticism is the increased risk of dislocation. We believe that an alternative acetabular component may reduce the risk of dislocation but still provide the functional benefit of total hip replacement in these patients. We therefore propose to investigate the dislocation risk of a dual-mobility acetabular component compared with standard polyethylene component in total hip replacement for independent patients with displaced intracapsular fractures of the proximal femur within the framework of the larger WHiTE (Warwick Hip Trauma Evaluation) Comprehensive Cohort Study. Cite this article: Bone Joint Res 2013;2:210–13


Bone & Joint Open
Vol. 1, Issue 5 | Pages 152 - 159
22 May 2020
Oommen AT Chandy VJ Jeyaraj C Kandagaddala M Hariharan TD Arun Shankar A Poonnoose PM Korula RJ

Aims. Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. Methods. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months). Results. The mean VCOR was 17.43 mm (9.5 to 27 mm) and horizontal centre of rotation (HCOR) was 24.79 mm (17.2 to 37.6 mm). Dislocation at three months following acetabulum reconstruction required femoral shortening for offset correction and hip centre restoration in one hip. Mean horizontal offset was 39.72 (32.7 to 48.2 mm) compared to 42.89 (26.7 to 50.6 mm) on the normal side. Mean Harris Hip Score (HHS) of 22.64 (14 to 35) improved to 79.43 (68 to 92). Mean pre-operative shortening was 3.95 cm (2 to 8 cm). Residual limb length discrepancy was 1.5 cm (0 to 2 cm). Sciatic neuropraxia in two patients recovered by six months, and femoral neuropraxia in one hip recovered by 12 months. Mean Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was 13.92 (9 to 19). Mean 12-item short form survey (SF-12) physical scores of 50.6 and mental of 60.12 were obtained. Conclusion. THA with subtrochanteric shortening is valuable in complex hips with high dislocation. The restoration of the hip centre of rotation and offset is important in these hips. Level of evidence IV. Femoral shortening useful in conditions other than DDH and septic sequelae. Restoration of hip centre combined with offset to be planned and ensured


Bone & Joint Research
Vol. 9, Issue 9 | Pages 572 - 577
1 Sep 2020
Matsumoto K Ganz R Khanduja V

Aims. Femoroacetabular impingement (FAI) describes abnormal bony contact of the proximal femur against the acetabulum. The term was first coined in 1999; however what is often overlooked is that descriptions of the morphology have existed in the literature for centuries. The aim of this paper is to delineate its origins and provide further clarity on FAI to shape future research. Methods. A non-systematic search on PubMed was performed using keywords such as “impingement” or “tilt deformity” to find early anatomical descriptions of FAI. Relevant references from these primary studies were then followed up. Results. Although FAI has existed for almost 5,000 years, the anatomical study by Henle in 1855 was the first to describe it in the literature. The relevance of the deformity was not appreciated at the time but this triggered the development of further anatomical studies. Parallel to this, Poland performed the first surgical correction of FAI in 1898 and subsequently, descriptions of similar procedures followed. In 1965, Murray outlined radiological evidence of idiopathic cam-type deformities and highlighted its significance. This led to a renewed focus on FAI and eventually, Ganz et al released their seminal paper that has become the foundation of our current understanding of FAI. Since then, there has been an exponential rise in published literature but finding a consensus, especially in the diagnosis of FAI, has proven to be difficult. Conclusion. Current research on FAI heavily focuses on new data, but old evidence does exist and studying it could be equally as important in clarifying the aetiology and classification of FAI. Cite this article: Bone Joint Res 2020;9(9):572–577


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem


Objectives. This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri. Materials and Methods. A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio. Results. The three new parameters showed the following correlations with ultimate fracture load: areal cortical index (r = 0.56, p < 0.001); canal-to-calcar ratio (r = 0.38, p = 0.03); and medial cortical ratio (r = 0.49, p < 0.005). These correlations were weaker when compared with those that we previously reported: mean cortical thickness of the proximal diaphysis versus ultimate fracture load (r = 0.71; p < 0.001); and mean density in the central humeral head versus ultimate fracture load (r = 0.70; p < 0.001). Conclusion. Simple-to-measure radiographic parameters of the proximal humerus reported previously are more useful in predicting ultimate fracture load than are areal cortical index, canal-to-calcar ratio, and medial cortical ratio. Cite this article: J. G. Skedros, C. S. Mears, W. Z. Burkhead. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 2017;6:1–7. DOI: 10.1302/2046-3758.61.BJR-2016-0145.R1


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 442 - 448
1 Apr 2014
Feyen H Shimmin AJ

Many different lengths of stem are available for use in primary total hip replacement, and the morphology of the proximal femur varies greatly. The more recently developed shortened stems provide a distribution of stress which closely mimics that of the native femur. Shortening the femoral component potentially comes at the cost of decreased initial stability. Clinical studies on the performance of shortened cemented and cementless stems are promising, although long-term follow-up studies are lacking. We provide an overview of the current literature on the anatomical features of the proximal femur and the biomechanical aspects and clinical outcomes associated with the length of the femoral component in primary hip replacement, and suggest a classification system for the length of femoral stems. Cite this article: Bone Joint J 2014;96-B:442-8


Bone & Joint Research
Vol. 1, Issue 11 | Pages 310 - 314
1 Nov 2012
Griffin XL Achten J Parsons N Boardman F Griffiths F Costa ML

Fractures of the proximal femur are one of the greatest challenges facing the medical community, constituting a heavy socioeconomic burden worldwide. The National Hip Fracture Audit currently provides a framework for service evaluation. This evaluation is based upon the assessment of process rather than assessment of patient-centred outcome and therefore it fails to provide meaningful data regarding the clinical effectiveness of treatments. This study aims to capture data from the cohort of patients who present with a fracture of the proximal femur at a single United Kingdom Major Trauma Centre. Patient-centred outcomes will be recorded and provide a baseline cohort within which to test the clinical effectiveness of experimental interventions


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1592 - 1596
1 Dec 2007
Fraitzl CR Käfer W Nelitz M Reichel H

Conventional treatment of mild slipped capital femoral epiphysis consists of fixation in situ with wires or screws. Recent contributions to the literature suggest that even a mild slip may lead to early damage of the acetabular labrum and adjacent cartilage by abutment of a prominent femoral metaphysis. It has been suggested that the appropriate treatment in mild slipped capital femoral epiphysis should not only prevent further slipping of the epiphysis, but also address potential femoroacetabular impingement by restoring the anatomy of the proximal femur. Between October 1984 and December 1995 we treated 16 patients for unilateral mild slipped capital femoral epiphysis by fixation in situ with Kirschner wires. In this study we have reviewed these patients for clinical and radiological evidence of femoroacetabular impingement. There was little clinical indication of impingement but radiological evaluation assessing the femoral head-neck ratio and measuring the Nötzli α angle on the anteroposterior and cross-table radiographs showed significant alterations in the proximal femur. None of the affected hips had a normal head-neck ratio and the mean α angle was 86° (55° to 99°) and 55° (40° to 94°) on the anteroposterior and lateral cross-table radiographs, respectively. While our clinical data favours conventional treatment, our radiological findings are in support of restoring the anatomy of the proximal femur to avoid or delay the development of femoroacetabular impingement following mild slipped capital femoral epiphysis


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 5 | Pages 708 - 710
1 May 2011
Gaston CL Tillman RM Grimer RJ

We report a case of spontaneous physeal growth arrest of the distal femur in a nine-year-old child with Ewing’s sarcoma of the proximal femur treated with chemotherapy and endoprosthetic replacement. Owing to the extent of disuse osteoporosis at the time of surgery, the entire intramedullary canal up to the distal femoral physis was filled with cement. Three years later, the femur remained at its pre-operative length of 19 cm. Pre-operative calculations of further growth failed to account for the growth arrest, and the initial expandable growing prosthesis inserted has been revised to a longer one in order to address the leg-length discrepancy. To our knowledge, this is the only reported case of distal femoral physeal growth arrest following cemented endoprosthetic replacement of the proximal femur