Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes. A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF.Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
Activation of the leptin pathway is closely correlated with human knee cartilage degeneration. However, the role of the long form of the leptin receptor (Ob-Rb) in cartilage degeneration needs further study. The aim of this study was to determine the effect of increasing the expression of Ob-Rb on chondrocytes using a lentiviral vector containing Ob-Rb. The medial and lateral cartilage samples of the tibial plateau from 12 osteoarthritis (OA) patients were collected. Ob-Rb messenger RNA (mRNA) was detected in these samples. The Ob-Rb-overexpressing chondrocytes and controls were treated with different doses of leptin for two days. The activation of the p53/p21 pathway and the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells were evaluated. The mammalian target of rapamycin (mTOR) signalling pathway and autophagy were detected after the chondrocytes were treated with a high dose of leptin.Objectives
Methods
Emerging evidence indicates that tendon disease is an active process with inflammation that is critical to disease onset and progression. However, the key cytokines responsible for driving and sustaining inflammation have not been identified. We performed a systematic review of the literature using MEDLINE (U.S. National Library of Medicine, Bethesda, Maryland) in March 2017. Studies reporting the expression of interleukins (ILs), tumour necrosis factor alpha (TNF-α) and interferon gamma in diseased human tendon tissues, and animal models of tendon injury or exercise in comparison with healthy control tissues were included.Objectives
Methods
The injured anterior cruciate ligament (ACL) is thought to exhibit an impaired healing response, and attempts at surgical repair have not been successful. Connective tissue growth factor (CTGF) is reported to be associated with wound healing, probably through transforming growth factor beta 1 (TGF-β1). A rabbit ACL injury model was used to study the effect of CTGF on ligament recovery. Quantitative real-time PCR (qRT-PCR) was performed for detection of changes in RNA levels of TGF-β1, type 1 collagen (COL1), type 2 collagen (COL2), SRY-related high mobility group-box gene9 (SOX9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase 13 (MMP-13). Expression of related proteins was detected by Western blotting.Objectives
Methods
Ligaments which heal spontaneously have a healing process that
is similar to skin wound healing. Menopause impairs skin wound healing
and may likewise impair ligament healing. Our purpose in this study
was to investigate the effect of surgical menopause on ligament
healing in a rabbit medial collateral ligament model. Surgical menopause was induced with ovariohysterectomy surgery
in adult female rabbits. Ligament injury was created by making a
surgical gap in the midsubstance of the medial collateral ligament.
Ligaments were allowed to heal for six or 14 weeks in the presence
or absence of oestrogen before being compared with uninjured ligaments. Molecular
assessment examined the messenger ribonucleic acid levels for collagens,
proteoglycans, proteinases, hormone receptors, growth factors and
inflammatory mediators. Mechanical assessments examined ligament
laxity, total creep strain and failure stress.Objectives
Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
The purpose of this study was to create a novel The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively.Objectives
Methods
The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.Objectives
Methods
This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software.Objectives
Methods
Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.Objectives
Methods
The effects of disease progression and common tendinopathy treatments
on the tissue characteristics of human rotator cuff tendons have
not previously been evaluated in detail owing to a lack of suitable
sampling techniques. This study evaluated the structural characteristics
of torn human supraspinatus tendons across the full disease spectrum,
and the short-term effects of subacromial corticosteroid injections
(SCIs) and subacromial decompression (SAD) surgery on these structural
characteristics. Samples were collected inter-operatively from supraspinatus tendons
containing small, medium, large and massive full thickness tears
(n = 33). Using a novel minimally invasive biopsy technique, paired
samples were also collected from supraspinatus tendons containing
partial thickness tears either before and seven weeks after subacromial
SCI (n = 11), or before and seven weeks after SAD surgery (n = 14).
Macroscopically normal subscapularis tendons of older patients (n
= 5, mean age = 74.6 years) and supraspinatus tendons of younger
patients (n = 16, mean age = 23.3) served as controls. Ultra- and
micro-structural characteristics were assessed using atomic force
microscopy and polarised light microscopy respectively. Objectives
Methods
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article:
The treatment of osteochondral lesions and osteoarthritis
remains an ongoing clinical challenge in orthopaedics. This review
examines the current research in the fields of cartilage regeneration,
osteochondral defect treatment, and biological joint resurfacing, and
reports on the results of clinical and pre-clinical studies. We
also report on novel treatment strategies and discuss their potential
promise or pitfalls. Current focus involves the use of a scaffold
providing mechanical support with the addition of chondrocytes or mesenchymal
stem cells (MSCs), or the use of cell homing to differentiate the
organism’s own endogenous cell sources into cartilage. This method
is usually performed with scaffolds that have been coated with a
chemotactic agent or with structures that support the sustained
release of growth factors or other chondroinductive agents. We also
discuss unique methods and designs for cell homing and scaffold
production, and improvements in biological joint resurfacing. There
have been a number of exciting new studies and techniques developed
that aim to repair or restore osteochondral lesions and to treat
larger defects or the entire articular surface. The concept of a
biological total joint replacement appears to have much potential. Cite this article:
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.