Advertisement for orthosearch.org.uk
Results 1 - 100 of 4140
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 326 - 333
1 Mar 2016
Morvan A Moreau S Combourieu B Pansard E Marmorat JL Carlier R Judet T Lonjon G

Aims. The primary aim of this study was to analyse the position of the acetabular and femoral components in total hip arthroplasty undertaken using an anterior surgical approach. . Patients and Methods. In a prospective, single centre study, we used the EOS imaging system to analyse the position of components following THA performed via the anterior approach in 102 patients (103 hips) with a mean age of 64.7 years (. sd. 12.6). Images were taken with patients in the standing position, allowing measurement of both anatomical and functional anteversion of the acetabular component. . Results. The mean inclination of the acetabular component was 39° (standard deviation (. sd). 6), the mean anatomical anteversion was 30° (. sd. 10), and the mean functional anteversion was 31° (. sd. 8) five days after surgery. The mean anteversion of the femoral component was 20° (. sd.  11). Anatomical and functional anteversion of the acetabular component differed by >  10° in 23 (22%) cases. Pelvic tilt was the only pre-operative predictive factor of this difference. Conclusion. Our study showed that anteversion of the acetabular component following THA using the anterior approach was greater than the recommended target value, and that substantial differences were observed in some patients when measured using two different measurement planes. If these results are confirmed by further studies, and considering that the anterior approach is intended to limit the incidence of dislocation, a new correlation study for each reference plane (anatomical and functional) will be necessary to define a ‘safe zone’ for use with the anterior approach. Take home message: EOS imaging system is helpful in the pre-operative and post-operative radiological analysis of total hip arthroplasty. Cite this article: Bone Joint J 2016;98-B:326–333


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 81 - 88
1 Mar 2024
Lustig S Cotte M Foissey C Asirvatham RD Servien E Batailler C

Aims. The benefit of a dual-mobility acetabular component (DMC) for primary total hip arthroplasties (THAs) is controversial. This study aimed to compare the dislocation and complication rates when using a DMC compared to single-mobility (SM) acetabular component in primary elective THA using data collected at a single centre, and compare the revision rates and survival outcomes in these two groups. Methods. Between 2010 and 2019, 2,075 primary THAs using either a cementless DM or SM acetabular component were included. Indications for DMC were patients aged older than 70 years or with high risk of dislocation. All other patients received a SM acetabular component. Exclusion criteria were cemented implants, patients treated for femoral neck fracture, and follow-up of less than one year. In total, 1,940 THAs were analyzed: 1,149 DMC (59.2%) and 791 SM (40.8%). The mean age was 73 years (SD 9.2) in the DMC group and 57 years (SD 12) in the SM group. Complications and revisions have been analyzed retrospectively. Results. The mean follow-up was 41.9 months (SD 14; 12 to 134). There were significantly fewer dislocations in the DMC group (n = 2; 0.17%) compared to the SM group (n = 8; 1%) (p = 0.019). The femoral head size did not influence the dislocation rate in the SM group (p = 0.702). The overall complication rate in the DMC group was 5.1% (n = 59) and in the SM group was 6.7% (n = 53); these were not statistically different (p = 0.214). No specific complications were attributed to the use of DMCs. In the DMC group, 18 THAs (1.6%) were revised versus 15 THAs in the SM group (1.9%) (p = 0.709). There was no statistical difference for any cause of revisions in both groups. The acetabular component aseptic revision-free survival rates at five years were 98% in the DMC group and 97.3% in the SM group (p = 0.780). Conclusion. The use of a monobloc DMC had a lower risk of dislocation in a high-risk population than SM component in a low-risk population at the mid-term follow-up. There was no significant risk of component-specific complications or revisions with DMCs in this large cohort. Cite this article: Bone Joint J 2024;106-B(3 Supple A):81–88


Aims. The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. Methods. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology. Results. The AP group had a mean KSS-Knee of 83.4 (standard deviation (SD) 19.2) and the MB group a mean of 84.9 (SD 18.2; p = 0.631), while mean KSS-Function was 75.4 (SD 15.3) and 73.2 (SD 16.2 p = 0.472), respectively. The mental (44.3 vs 45.1; p = 0.464) and physical (44.8 vs 44.9; p = 0.893) dimensions of the SF-12 and ROM (97.9° vs 99.7°; p = 0.444) were not different between the groups. Implant survivorship at five years were 99.2% and 97.7% (p = 0.321). The AP group had a greater SF-6D gain of 0.145 compared to the MB group, with an associated cost saving of £406, which resulted in a negative ICER of -£406/0.145 = -£2,800. Therefore, the AP tibial component was dominant, being a more effective and less expensive intervention. Conclusion. There were no differences in functional outcomes or survivorship at five years between AP and MB tibial components in patients aged 70 years and older, however the AP component was shown to be more cost-effective. In the UK, only 1.4% of all total knee arthroplasties use an AP component; even a modest increase in usage nationally could lead to significant financial savings. Cite this article: Bone Jt Open 2022;3(12):969–976


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 104 - 109
1 Mar 2024
Sugano N Maeda Y Fuji H Tamura K Nakamura N Takashima K Uemura K Hamada H

Aims. Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component. Methods. We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion. Results. The mean difference in femoral component anteversion between intraoperative and postoperative CT measurements (system accuracy of component anteversion) was 0.8° (SD 1.8°) in the Exeter group and 2.1° (SD 2.3°) in the Accolade II group, respectively (p = 0.020). The mean difference in anteversion between the plan and the postoperative CT measurements (clinical accuracy of femoral component anteversion) was 1.2° (SD 3.6°) in the Exeter group, and 4.2° (SD 3.9°) in the Accolade II group (p = 0.003). No significant differences were found in acetabular component inclination and anteversion; however, the clinical accuracy of combined anteversion was significantly better in the Exeter group (0.6° (SD 3.9°)) than the Accolade II group (3.6° (SD 4.1°)). Conclusion. The Mako THA system and software helps surgeons control the femoral component anteversion to achieve the target angle of insertion. The Exeter femoral component, inserted using Mako THA system, showed greater precision for femoral component and combined component anteversion than the Accolade II component. Cite this article: Bone Joint J 2024;106-B(3 Supple A):104–109


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 137 - 142
1 Mar 2024
van Veghel MHW van der Koelen RE Hannink G Schreurs BW Rijnen WHC

Aims. The aim of this study was to report the long-term follow-up of cemented short Exeter femoral components when used in primary total hip arthroplasty (THA). Methods. We included all primary 394 THAs with a cemented short Exeter femoral component (≤ 125 mm) used in our tertiary referral centre between October 1993 and December 2021. A total of 83 patients (21%) were male. The median age of the patients at the time of surgery was 42 years (interquartile range (IQR) 30 to 55). The main indication for THA was a childhood hip disease (202; 51%). The median follow-up was 6.7 years (IQR 3.1 to 11.0). Kaplan-Meier survival analyses were performed to determine the rates of survival with femoral revision for any indication, for septic loosening, for fracture of the femoral component and for aseptic loosening as endpoints. The indications for revision were evaluated. Fractures of the femoral component were described in detail. Results. The 20-year rate of survival was 85.4% (95% confidence interval (CI) 73.9 to 92.0) with revision for any indication, 96.2% (95% CI 90.5 to 98.5) with revision for septic loosening and 92.7% (95% CI 78.5 to 97.6) with revision for fracture of the femoral component. No femoral components were revised for aseptic loosening. There were 21 revisions of the femoral component; most (seven) as part of a two-stage management of infection. Fracture of the femoral component occurred in four THAs (1.0%) at 6.6, 11.6, 16.5, and 18.2 years of follow-up, respectively. Three of these were transverse fractures and occurred at the level of the lesser trochanter. In one THA, there was a fracture of the neck of the component. Conclusion. THAs using cemented short Exeter femoral components showed acceptable rates of survival of the femoral component at long-term follow-up, in this young cohort of patients. Although fracture is a rare complication of these components, surgeons should be aware of their incidence and possible risk factors. Cite this article: Bone Joint J 2024;106-B(3 Supple A):137–142


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1025 - 1032
1 Aug 2020
Hampton M Mansoor J Getty J Sutton PM

Aims. Total knee arthroplasty is an established treatment for knee osteoarthritis with excellent long-term results, but there remains controversy about the role of uncemented prostheses. We present the long-term results of a randomized trial comparing an uncemented tantalum metal tibial component with a conventional cemented component of the same implant design. Methods. Patients under the age of 70 years with symptomatic osteoarthritis of the knee were randomized to receive either an uncemented tantalum metal tibial monoblock component or a standard cemented modular component. The mean age at time of recruitment to the study was 63 years (50 to 70), 46 (51.1%) knees were in male patients, and the mean body mass index was 30.4 kg/m. 2. (21 to 36). The same cruciate retaining total knee system was used in both groups. All patients received an uncemented femoral component and no patients had their patella resurfaced. Patient outcomes were assessed preoperatively and postoperatively using the modified Oxford Knee Score, Knee Society Score, and 12-Item Short-Form Health Survey questionnaire (SF-12) score. Radiographs were analyzed using the American Knee Society Radiograph Evaluation score. Operative complications, reoperations, or revision surgery were recorded. A total of 90 knees were randomized and at last review 77 knees were assessed. In all, 11 patients had died and two were lost to follow-up. Results. At final review all patients were between 11 and 15 years following surgery. In total, 41 of the knees were cemented and 36 uncemented. There were no revisions in the cemented group and one revision in the uncemented group for fracture. The uncemented group reported better outcomes with both statistically and clinically significant (p = 0.001) improvements in knee-specific Oxford and Knee Society scores compared with the cemented group. The global SF-12 scores demonstrated no statistical difference (p = 0.812). Uncemented knees had better radiological analysis compared with the cemented group (p < 0.001). Conclusion. Use of an uncemented trabecular metal tibial implant can afford better long-term clinical outcomes when compared to cemented tibial components of a matched design. However, both have excellent survivorship up to 15 years after implantation. Cite this article: Bone Joint J 2020;102-B(8):1025–1032


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. Cite this article: Bone Joint J 2023;105-B(3):261–268


Bone & Joint Open
Vol. 5, Issue 6 | Pages 514 - 523
24 Jun 2024
Fishley W Nandra R Carluke I Partington PF Reed MR Kramer DJ Wilson MJ Hubble MJW Howell JR Whitehouse SL Petheram TG Kassam AM

Aims. In metal-on-metal (MoM) hip arthroplasties and resurfacings, mechanically induced corrosion can lead to elevated serum metal ions, a local inflammatory response, and formation of pseudotumours, ultimately requiring revision. The size and diametral clearance of anatomical (ADM) and modular (MDM) dual-mobility polyethylene bearings match those of Birmingham hip MoM components. If the acetabular component is satisfactorily positioned, well integrated into the bone, and has no surface damage, this presents the opportunity for revision with exchange of the metal head for ADM/MDM polyethylene bearings without removal of the acetabular component. Methods. Between 2012 and 2020, across two centres, 94 patients underwent revision of Birmingham MoM hip arthroplasties or resurfacings. Mean age was 65.5 years (33 to 87). In 53 patients (56.4%), the acetabular component was retained and dual-mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). Patients underwent follow-up of minimum two-years (mean 4.6 (2.1 to 8.5) years). Results. In the DM group, two (3.8%) patients underwent further surgery: one (1.9%) for dislocation and one (1.9%) for infection. In the AR group, four (9.8%) underwent further procedures: two (4.9%) for loosening of the acetabular component and two (4.9%) following dislocations. There were no other dislocations in either group. In the DM group, operating time (68.4 vs 101.5 mins, p < 0.001), postoperative drop in haemoglobin (16.6 vs 27.8 g/L, p < 0.001), and length of stay (1.8 vs 2.4 days, p < 0.001) were significantly lower. There was a significant reduction in serum metal ions postoperatively in both groups (p < 0.001), although there was no difference between groups for this reduction (p = 0.674 (cobalt); p = 0.186 (chromium)). Conclusion. In selected patients with Birmingham MoM hips, where the acetabular component is well-fixed and in a satisfactory position with no surface damage, the metal head can be exchanged for polyethylene ADM/MDM bearings with retention of the acetabular prosthesis. This presents significant benefits, with a shorter procedure and a lower risk of complications. Cite this article: Bone Jt Open 2024;5(6):514–523


Bone & Joint Open
Vol. 4, Issue 2 | Pages 79 - 86
10 Feb 2023
McLaughlin JR Johnson MA Lee KR

Aims. The purpose of this study is to report our updated results at a minimum follow-up of 30 years using a first generation uncemented tapered femoral component in primary total hip arthroplasty (THA). Methods. The original cohort consisted of 145 consecutive THAs performed by a single surgeon in 138 patients. A total of 37 patients (40 hips) survived a minimum of 30 years, and are the focus of this review. The femoral component used in all cases was a first-generation Taperloc with a non-modular 28 mm femoral head. Clinical follow-up at a minimum of 30 years was obtained on every living patient. Radiological follow-up at 30 years was obtained on all but four. Results. Seven femoral components (18%) required revision, and none for septic loosening. Four well fixed stems were removed during acetabular revision and three were revised for late infection. One femoral component (3%) was loose by radiological criteria. The mean Harris Hip Score improved from 47 points (SD 4.62) preoperatively to 83 points (SD 9.27) at final follow-up. With revision for any reason as the endpoint, survival of the femoral component was 80% (95% confidence interval (CI) 61% to 90%) at 32 years. With revision for aseptic loosing femoral component, survival was 99% (95% CI 93% to 99%). Conclusion. With regards to aseptic loosening, the Taperloc femoral component provides excellent fixation at a mean follow-up of 32 years. Cite this article: Bone Jt Open 2023;4(2):79–86


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 59 - 65
1 May 2024
Liu WKT Cheung A Fu H Chan PK Chiu KY

Aims. Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear. Methods. Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years. Results. A total of 20 patients (23.3%) had complications, with dislocation alone being the most common (8.1%; 7/86). Ten patients (11.6%) required re-revision surgery. Cementing the HXLPE liner (8.0%; 4/50) had a higher incidence of re-revision due to acetabular component liner-related complications than using the original locking mechanism (0%; 0/36; p = 0.082). Fixation using the original locking mechanism was associated with re-revision due to acetabular component loosening (8.3%; 3/36), compared to cementing (0%; 0/50; p = 0.038). Overall estimated mean survival was 19.2 years. There was no significant difference in the re-revision rate between the original locking mechanism (11.1%; 4/36) and cementing (12.0%; 6/50; p = 0.899). Using Kaplan-Meier survival analysis, the revision-free survival of HXLPE fixed with the original locking mechanism and cementing was 94.1% and 93.2%, respectively, at ten years, and 84.7% and 81.3%, respectively, at 20 years (p = 0.840). Conclusion. The re-revision rate and the revision-free survival following acetabular component liner exchange revision surgery using the HXLPE liner were not influenced by the fixation technique used. Both techniques were associated with good survival at a mean follow-up of 13 years. Careful patient selection is necessary for isolated acetabular component liner exchange revision surgery in order to achieve the best outcomes. Cite this article: Bone Joint J 2024;106-B(5 Supple B):59–65


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 378 - 385
1 Apr 2019
García-Rey E Carbonell-Escobar R Cordero-Ampuero J García-Cimbrelo E

Aims. We previously reported the long-term results of the cementless Duraloc-Profile total hip arthroplasty (THA) system in a 12- to 15-year follow-up study. In this paper, we provide an update on the clinical and radiological results of a previously reported cohort of patients at 23 to 26 years´ follow-up. Patients and Methods. Of the 99 original patients (111 hips), 73 patients (82 hips) with a mean age of 56.8 years (21 to 70) were available for clinical and radiological study at a minimum follow-up of 23 years. There were 40 female patients (44 hips) and 33 male patients (38 hips). Results. All acetabular and femoral components were well fixed and showed signs of bone ingrowth. Nine acetabular components were revised due to wear-osteolysis-related problems and four due to late dislocation. The probability of not having component revision at 25 years was 83.2% (95% confidence interval (CI) 74.5 to 91.8; number at risk 41). Acetabular osteolysis was observed in ten hips. The mean femoral head penetration was 1.52 mm (. sd. 0.8) at 15 years and 1.92 mm (. sd. 1.2) at 25 years. Receiver operating characteristic (ROC) analysis revealed that mean femoral penetration with a value of 0.11 mm/year or more was associated with the appearance of osteolysis. The 25-year Kaplan–Meier survival with different endpoints was 89.9% for acetabular osteolysis (95% CI 83.3 to 96.5), 92.1% for proximal femoral osteolysis (95% CI 86.1 to 98.2), and 75.5% for femoral osteopenia (95% CI 66.5 to 84.5). Conclusion. The Duraloc-Profile THA system showed excellent long-term bone fixation. Nevertheless, monitoring is recommended in order to detect wear and late dislocations in this population that was relatively young at the time of surgery. Cite this article: Bone Joint J 2019;101-B:378–385


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims. Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems. Methods. In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years. Results. At two and five years, more patients considered the hip with the CLS femoral component as superior but without a statistically significant difference. There were no differences in clinical outcome, magnitude of femoral component migration, or change of bone mineral density at five years. At three months, the Fitmore femoral component had subsided a median -0.71 mm (interquartile range (IQR) -1.67 to -0.20) and the CLS femoral component -0.70 mm (IQR -1.53 to -0.17; p = 0.742). In both groups the femoral head centre had migrated posteriorly (Fitmore -0.17 mm (IQR -0.98 to -0.04) and CLS -0.23 mm (IQR -0.87 to 0.07; p = 0.936)). After three months neither of the femoral components showed much further migration. During the first postoperative year, one Fitmore femoral component was revised due to aseptic loosening. Conclusion. Up to five years, we found no statistically significant difference in outcomes between the Fitmore and the CLS femoral components. The slightly worse outcomes, including one revised hip because of loosening, speaks against the hypothesis that the Fitmore femoral component should be advantageous compared to the CLS if more patients had been recruited to this study. Cite this article: Bone Jt Open 2023;4(5):306–314


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1279 - 1285
1 Dec 2023
Baker JF Nadar AC Jouflas AC Smith LS Sachdeva S Yakkanti MR Malkani AL

Aims. The use of cementless total knee arthroplasty (TKA) components has increased during the past decade. The initial design of cementless metal-backed patellar components had shown high failure rates due to many factors. The aim of this study was to evaluate the clinical results of a second-generation cementless, metal-backed patellar component of a modern design. Methods. This was a retrospective review of 707 primary TKAs in 590 patients from a single institution, using a cementless, metal-backed patellar component with a mean follow-up of 6.9 years (2 to 12). A total of 409 TKAs were performed in 338 females and 298 TKAs in 252 males. The mean age of the patients was 63 years (34 to 87) and their mean BMI was 34.3 kg/m. 2. (18.8 to 64.5). The patients were chosen to undergo a cementless procedure based on age and preoperative radiological and intraoperative bone quality. Outcome was assessed using the Knee Society knee and function scores and range of motion (ROM), complications, and revisions. Results. A total of 24 TKAs (3.4%) in 24 patients failed and required revision surgery, of which five were due to patellar complications (0.71%): one for aseptic patellar loosening (0.14%) and four for polyethylene dissociation (0.57%). A total of 19 revisions (2.7%) were undertaken in 19 patients for indications which did not relate to the patella: four for aseptic tibial loosening (0.57%), one for aseptic femoral loosening (0.14%), nine for periprosthetic infection (1.3%), one for popliteus impingement (0.14%), and four for instability (0.57%). Knee Society knee and function scores, and ROM, improved significantly when comparing pre- and postoperative values. Survival of the metal-backed patellar component for all-cause failure was 97.5% (95% confidence interval 94.9% to 100%) at 12 years. Conclusion. The second-generation cementless TKA design of metal-backed patellar components showed a 97.5% survival at 12 years, with polyethylene dissociation from the metal-backing being the most common cause of patellar failure. In view of the increased use of TKA, especially in younger, more active, or obese patients, these findings are encouraging at mean follow-up of seven years. Cite this article: Bone Joint J 2023;105-B(12):1279–1285


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1045 - 1051
1 Oct 2023
Turgeon TR Righolt CH Burnell CD Gascoyne TC Hedden DR Bohm ER

Aims. The primary aim of this trial was to compare the subsidence of two similar hydroxyapatite-coated titanium femoral components from different manufacturers. Secondary aims were to compare rotational migration (anteversion/retroversion and varus/valgus tilt) and patient-reported outcome measures between both femoral components. Methods. Patients were randomized to receive one of the two femoral components (Avenir or Corail) during their primary total hip arthroplasty between August 2018 and September 2020. Radiostereometric analysis examinations at six, 12, and 24 months were used to assess the migration of each implanted femoral component compared to a baseline assessment. Patient-reported outcome measures were also recorded for these same timepoints. Overall, 50 patients were enrolled (62% male (n = 31), with a mean age of 65.7 years (SD 7.3), and mean BMI of 30.2 kg/m. 2. (SD 5.2)). Results. The two-year subsidence was similar for Avenir (-0.018 mm (95% confidence interval (CI) -0.053 to 0.018) and Corail (0.000 mm (95% CI -0.027 to 0.026; p = 0.428). Both anteversion/retroversion (Avenir 0.139° (95% CI -0.204 to 0.481°); Corail -0.196° (95% CI -0.445 to 0.053°; p = 0.110) and varus/valgus tilt (Avenir -0.024° (95% CI -0.077 to 0.028); Corail -0.049° (95% CI -0.098 to 0.000°; p = 0.473) were not statistically significantly different. After two years, patients reported similar improvements in EuroQol five-dimension five-level health questionnaire (Avenir 0.22 (SD 0.2); Corail 0.22 (SD 0.18); p = 0.965) and other outcomes scores. Patient satisfaction on a five-point Likert scale was also similar between both groups after two years (Avenir 1.38 (SD 0.88); Corail 1.33 (SD 0.57); p = 0.846). Conclusion. The performance of both femoral components was similar in terms of stability and patient outcomes. Cite this article: Bone Joint J 2023;105-B(10):1045–1051


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1192 - 1198
1 Oct 2019
Sköldenberg OG Rysinska AD Chammout G Salemyr M Mukka SS Bodén H Eisler T

Aims. Radiostereometric analysis (RSA) studies of vitamin E-doped, highly crosslinked polyethylene (VEPE) liners show low head penetration rates in cementless acetabular components. There is, however, currently no data on cemented VEPE acetabular components in total hip arthroplasty (THA). The aim of this study was to evaluate the safety of a new cemented VEPE component, compared with a conventional polyethylene (PE) component regarding migration, head penetration, and clinical results. Patients and Methods. We enrolled 42 patients (21 male, 21 female) with osteoarthritis and a mean age of 67 years (. sd. 5), in a double-blinded, noninferiority, randomized controlled trial. The subjects were randomized in a 1:1 ratio to receive a reverse hybrid THA with a cemented component of either argon-gas gamma-sterilized PE component (controls) or VEPE, with identical geometry. The primary endpoint was proximal implant migration of the component at two years postoperatively measured with RSA. Secondary endpoints included total migration of the component, penetration of the femoral head into the component, and patient-reported outcome measurements. Results. In total, 19 control implants and 18 implants in the VEPE group were analyzed for the primary endpoint. We found a continuous proximal migration of the component in the VEPE group that was significantly higher with a difference at two years of a mean 0.21 mm (95% confidence interval (CI) 0.05 to 0.37; p = 0.013). The total migration was also significantly higher in the VEPE group, but femoral head penetration was lower. We found no difference in clinical outcomes between the groups. Conclusion. At two years, this cemented VEPE component, although having a low head penetration and excellent clinical results, failed to meet noninferiority compared with the conventional implant by a proximal migration above the proposed safety threshold of RSA. The early proximal migration pattern of the VEPE component is a reason for continued monitoring, although a specific threshold for proximal migration and risk for later failure cannot be defined and needs further study. Cite this article: Bone Joint J 2019;101-B:1192–1198


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 115 - 120
1 Mar 2024
Ricotti RG Flevas DA Sokrab R Vigdorchik JM Mayman DJ Jerabek SA Sculco TP Sculco PK

Aims. Periprosthetic femoral fracture (PPF) is a major complication following total hip arthroplasty (THA). Uncemented femoral components are widely preferred in primary THA, but are associated with higher PPF risk than cemented components. Collared components have reduced PPF rates following uncemented primary THA compared to collarless components, while maintaining similar prosthetic designs. The purpose of this study was to analyze PPF rate between collarless and collared component designs in a consecutive cohort of posterior approach THAs performed by two high-volume surgeons. Methods. This retrospective series included 1,888 uncemented primary THAs using the posterior approach performed by two surgeons (PKS, JMV) from January 2016 to December 2022. Both surgeons switched from collarless to collared components in mid-2020, which was the only change in surgical practice. Data related to component design, PPF rate, and requirement for revision surgery were collected. A total of 1,123 patients (59.5%) received a collarless femoral component and 765 (40.5%) received a collared component. PPFs were identified using medical records and radiological imaging. Fracture rates between collared and collarless components were analyzed. Power analysis confirmed 80% power of the sample to detect a significant difference in PPF rates, and a Fisher’s exact test was performed to determine an association between collared and collarless component use on PPF rates. Results. Overall, 17 PPFs occurred (0.9%). There were 16 fractures out of 1,123 collarless femoral components (1.42%) and one fracture out of 765 collared components (0.13%; p = 0.002). The majority of fractures (n = 14; 82.4%) occurred within 90 days of primary THA. There were ten reoperations for PPF with collarless components (0.89%) and one reoperation with a collared component (0.13%; p = 0.034). Conclusion. Collared femoral components were associated with significant decreases in PPF rate and reoperation rate for PPF compared to collarless components in uncemented primary THA. Future studies should investigate whether new-generation collared components reduce PPF rates with longer-term follow-up. Cite this article: Bone Joint J 2024;106-B(3 Supple A):115–120


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 121 - 129
1 Mar 2024
Orce Rodríguez A Smith PN Johnson P O'Sullivan M Holder C Shimmin A

Aims. In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA). Methods. Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups. Results. From six months postoperatively onwards, patients aged ≥ 75 years undergoing primary THA with primary diagnosis of OA have a lower risk of all-cause revision with collared cementless components than with a polished tapered cemented component (HR 0.78 (95% confidence interval 0.64 to 0.96); p = 0.018). There is no difference in revision rate prior to six months. Conclusion. Patients aged ≥ 75 years with a primary diagnosis of OA have a significantly lower rate of revision with the most common collared cementless femoral component, compared with the most common polished tapered cemented components from six months postoperatively onwards. The lower revision rate is largely due to a reduction in revisions for fracture and infection. Cite this article: Bone Joint J 2024;106-B(3 Supple A):121–129


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 352 - 358
1 Apr 2024
Wilson JM Trousdale RT Bedard NA Lewallen DG Berry DJ Abdel MP

Aims. Dislocation remains a leading cause of failure following revision total hip arthroplasty (THA). While dual-mobility (DM) bearings have been shown to mitigate this risk, options are limited when retaining or implanting an uncemented shell without modular DM options. In these circumstances, a monoblock DM cup, designed for cementing, can be cemented into an uncemented acetabular shell. The goal of this study was to describe the implant survival, complications, and radiological outcomes of this construct. Methods. We identified 64 patients (65 hips) who had a single-design cemented DM cup cemented into an uncemented acetabular shell during revision THA between 2018 and 2020 at our institution. Cups were cemented into either uncemented cups designed for liner cementing (n = 48; 74%) or retained (n = 17; 26%) acetabular components. Median outer head diameter was 42 mm. Mean age was 69 years (SD 11), mean BMI was 32 kg/m. 2. (SD 8), and 52% (n = 34) were female. Survival was assessed using Kaplan-Meier methods. Mean follow-up was two years (SD 0.97). Results. There were nine cemented DM cup revisions: three for periprosthetic joint infection, three for acetabular aseptic loosening from bone, two for dislocation, and one for a broken cup-cage construct. The two-year survivals free of aseptic DM revision and dislocation were both 92%. There were five postoperative dislocations, all in patients with prior dislocation or abductor deficiency. On radiological review, the DM cup remained well-fixed at the cemented interface in all but one case. Conclusion. While dislocation was not eliminated in this series of complex revision THAs, this technique allowed for maximization of femoral head diameter and optimization of effective acetabular component position during cementing. Of note, there was only one failure at the cemented interface. Cite this article: Bone Joint J 2024;106-B(4):352–358


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims. This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. Methods. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018. Results. Of the surviving 30 patients (34 THAs), there were four periprosthetic fractures: one underwent femoral revision after 21 years, two had surgical fixation as the stem was deemed stable, and one was treated nonoperatively due to the patient’s comorbidities. The periprosthetic fracture patients showed radiological evidence of change in bone stock around the femoral stem, which may have contributed to the fractures; this was reflected in change of the canal flare index at the proximal femur. Two patients (two hips) were lost to follow-up. Using aseptic loosening as the endpoint, 16 patients (18 hips; 48%) needed acetabular revision. None of the femoral components were revised for aseptic loosening, demonstrating 100% survival. The estimate of the cumulative proportion surviving for revisions due to any cause was 0.97 (standard error 0.03). Conclusion. In young patients with high demands, the Furlong HAC-coated femoral component gives excellent long-term results. Cite this article: Bone Jt Open 2024;5(4):286–293


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1118 - 1125
4 Oct 2022
Suda Y Hiranaka T Kamenaga T Koide M Fujishiro T Okamoto K Matsumoto T

Aims. A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. Methods. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups. Results. Medial tibial fractures occurred after surgery in 15 patients (15 OUKAs) in the conventional group, but only one patient (one OUKA) had a tibial fracture after surgery in the varus group. This difference was significant (6.9% vs 1.1%; p = 0.029). The mean posterior KCD was significantly shorter in the conventional group (5.0 mm (SD 1.7)) than in the varus group (6.1 mm (SD 2.1); p = 0.002). Conclusion. In OUKA, the distance between the keel and posterior tibial cortex was longer in our patients with slight varus alignment of the tibial component, which seems to decrease the risk of postoperative tibial fracture. Cite this article: Bone Joint J 2022;104-B(10):1118–1125


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 444 - 451
1 Apr 2022
Laende EK Mills Flemming J Astephen Wilson JL Cantoni E Dunbar MJ

Aims. Thresholds of acceptable early migration of the components in total knee arthroplasty (TKA) have traditionally ignored the effects of patient and implant factors that may influence migration. The aim of this study was to determine which of these factors are associated with overall longitudinal migration of well-fixed tibial components following TKA. Methods. Radiostereometric analysis (RSA) data over a two-year period were available for 419 successful primary TKAs (267 cemented and 152 uncemented in 257 female and 162 male patients). Longitudinal analysis of data using marginal models was performed to examine the associations of patient factors (age, sex, BMI, smoking status) and implant factors (cemented or uncemented, the size of the implant) with maximum total point motion (MTPM) migration. Analyses were also performed on subgroups based on sex and fixation. Results. In the overall group, only fixation was significantly associated with migration (p < 0.001). For uncemented tibial components in males, smoking was significantly associated with lower migration (p = 0.030) and BMI approached significance (p = 0.061). For females with uncemented components, smoking (p = 0.081) and age (p = 0.063) approached significance and were both associated with increased migration. The small number of self-reported smokers in this study warrants cautious interpretation and further investigation. For cemented components in females, larger sizes of tibial component were significantly associated with increased migration (p = 0.004). No factors were significant for cemented components in males. Conclusion. The migration of uncemented tibial components was more sensitive to patient factors than cemented implants. These differences were not consistent by sex, suggesting that it may be of value to evaluate female and male patients separately following TKA. Cite this article: Bone Joint J 2022;104-B(4):444–451


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1215 - 1221
1 Jul 2021
Kennedy JW Ng NYB Young D Kane N Marsh AG Meek RMD

Aims. Cement-in-cement revision of the femoral component represents a widely practised technique for a variety of indications in revision total hip arthroplasty. In this study, we compare the clinical and radiological outcomes of two polished tapered femoral components. Methods. From our prospectively collated database, we identified all patients undergoing cement-in-cement revision from January 2005 to January 2013 who had a minimum of two years' follow-up. All cases were performed by the senior author using either an Exeter short revision stem or the C-Stem AMT high offset No. 1 prosthesis. Patients were followed-up annually with clinical and radiological assessment. Results. A total of 97 patients matched the inclusion criteria (50 Exeter and 47 C-Stem AMT components). There were no significant differences between the patient demographic data in either group. Mean follow-up was 9.7 years. A significant improvement in Oxford Hip Score (OHS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 12-item Short-Form Survey (SF-12) scores was observed in both cohorts. Leg lengths were significantly shorter in the Exeter group, with a mean of -4 mm in this cohort compared with 0 mm in the C-Stem AMT group. One patient in the Exeter group had early evidence of radiological loosening. In total, 16 patients (15%) underwent further revision of the femoral component (seven in the C-Stem AMT group and nine in the Exeter group). No femoral components were revised for aseptic loosening. There were two cases of femoral component fracture in the Exeter group. Conclusion. Our series shows promising mid-term outcomes for the cement-in-cement revision technique using either the Exeter or C-Stem AMT components. These results demonstrate that cement-in-cement revision using a double or triple taper-slip design is a safe and reliable technique when used for the correct indications. Cite this article: Bone Joint J 2021;103-B(7):1215–1221


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion. Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study. Cite this article: Bone Joint Res 2024;13(6):272–278


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims. The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. Methods. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level. Results. At the epiphyseal level, Technique 2 gave the greatest depth compared to the other investigated techniques. At the endomedular metaphyseal level, Technique 1 showed greater cement penetration than the other techniques. Conclusion. The best metaphyseal cementation technique of the tibial component is bone cementation with cement restrictor. Additionally, if full tibial component cementation is to be done, the cement volume used should be about 40 g of cement, and not the usual 20 g. Cite this article: Bone Joint Res 2021;10(8):467–473


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 97 - 103
1 Mar 2024
Baujard A Martinot P Demondion X Dartus J Faure PA Girard J Migaud H

Aims. Mechanical impingement of the iliopsoas (IP) tendon accounts for 2% to 6% of persistent postoperative pain after total hip arthroplasty (THA). The most common initiator is anterior acetabular component protrusion, where the anterior margin is not covered by anterior acetabular wall. A CT scan can be used to identify and measure this overhang; however, no threshold exists for determining symptomatic anterior IP impingement due to overhang. A case-control study was conducted in which CT scan measurements were used to define a threshold that differentiates patients with IP impingement from asymptomatic patients after THA. Methods. We analyzed the CT scans of 622 patients (758 THAs) between May 2011 and May 2020. From this population, we identified 136 patients with symptoms suggestive of IP impingement. Among them, six were subsequently excluded: three because the diagnosis was refuted intraoperatively, and three because they had another obvious cause of impingement, leaving 130 hips (130 patients) in the study (impingement) group. They were matched to a control group of 138 asymptomatic hips (138 patients) after THA. The anterior acetabular component overhang was measured on an axial CT slice based on anatomical landmarks (orthogonal to the pelvic axis). Results. The impingement group had a median overhang of 8 mm (interquartile range (IQR) 5 to 11) versus 0 mm (IQR 0 to 4) for the control group (p < 0.001). Using receiver operating characteristic curves, an overhang threshold of 4 mm was best correlated with a diagnosis of impingement (sensitivity 79%, specificity 85%; positive predictive value 75%, negative predictive value 85%). Conclusion. Pain after THA related to IP impingement can be reasonably linked to acetabular overhang if it exceeds 4 mm on a CT scan. Below this threshold, it seems logical to look for another cause of IP irritation or another reason for the pain after THA before concluding that impingement is present. Cite this article: Bone Joint J 2024;106-B(3 Supple A):97–103


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in BMD in the inferior and medial regions, with preserved BMD laterally, suggesting lateral rim loading. However, the pressfit component subsequently showed a reversal in BMD medially with recovery back towards baseline, and a continued rise in lateral BMD. This would suggest that the pressfit component begins to reload the medial bone over time, more akin to the cemented component. Analysis of postoperative radiographs revealed no pressfit component subsidence or movement up to two years postoperatively (100% interobserver reliability). Medial defects seen immediately postoperatively in five cases had completely resolved by two years in four patients. Conclusion. Initially, the uncemented monoblock component behaved similarly to the rigid trabecular metal component with lateral rim loading; however, over two years this changed to more closely resemble the loading pattern of a cemented polyethylene component with increasing medial pelvic loading. This indicates that the uncemented monoblock acetabular component may result in optimized fixation and preservation of retroacetabular bone stock. Cite this article: Bone Joint J 2021;103-B(5):872–880


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims. This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Methods. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk. Results. During gait, varied sagittal positioning did not lead to excessive Von Mises stress or micromotion. However, under squat conditions, posterior positioning (-4 and -5 mm) resulted in stress exceeding 150 MPa at the femoral notch, indicating potential fracture risk. Conversely, +1 mm and 0 mm sagittal positions demonstrated minimal interface micromotion. Conclusion. Slightly anterior sagittal positioning (+1 mm) or neutral positioning (0 mm) effectively reduced stress concentration at the femoral notch and minimized interface micromotion. Thus, these positions are deemed suitable to decrease the risk of aseptic loosening and periprosthetic femoral fracture


Aims. Revision total hip arthroplasty in patients with Vancouver type B3 fractures with Paprosky type IIIA, IIIB, and IV femoral defects are difficult to treat. One option for Paprovsky type IIIB and IV defects involves modular cementless, tapered, revision femoral components in conjunction with distal interlocking screws. The aim of this study was to analyze the rate of reoperations and complications and union of the fracture, subsidence of the stem, mortality, and the clinical outcomes in these patients. Methods. A total of 46 femoral components in patients with Vancouver B3 fractures (23 with Paprosky type IIIA, 19 with type IIIB, and four with type IV defects) in 46 patients were revised with a transfemoral approach using a modular, tapered, cementless revision Revitan curved femoral component with distal cone-in-cone fixation and prospectively followed for a mean of 48.8 months (SD 23.9; 24 to 112). The mean age of the patients was 80.4 years (66 to 100). Additional distal interlocking was also used in 23 fractures in which distal cone-in-cone fixation in the isthmus was < 3 cm. Results. One patient (2.2%) died during the first postoperative year. After six months, 43 patients (93.5%) had osseous, and three had fibrous consolidation of the fracture and the bony flap, 42 (91.3%) had bony ingrowth and four had stable fibrous fixation of the stem. No patient had radiolucency around the interlocking screws and no screw broke. One patient had non-progressive subsidence and two had a dislocation. The mean Harris Hip Score increased from of 57.8 points (SD 7.9) three months postoperatively to 76.1 points (SD 10.7) 24 months postoperatively. Conclusion. The 2° tapered, fluted revision femoral component with distal cone-in-cone-fixation, combined with additional distal interlocking in patients with bony deficiency at the isthmus, led to reproducibly good results in patients with a Vancouver B3 fracture and Paprosky type IIIA, IIIB, and IV defects with regard to union of the fracture, subsidence or loosening of the stem, and clinical outcomes. Cite this article: Bone Joint J 2024;106-B(4):344–351


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 133 - 138
1 May 2024
Peuchot H Jacquet C Fabre-Aubrespy M Ferguson D Ollivier M Flecher X Argenson J

Aims. Dual-mobility acetabular components (DMCs) have improved total hip arthroplasty (THA) stability in femoral neck fractures (FNFs). In osteoarthritis, the direct anterior approach (DAA) has been promoted for improving early functional results compared with the posterolateral approach (PLA). The aim of this study was to compare these two approaches in FNF using DMC-THA. Methods. A prospective continuous cohort study was conducted on patients undergoing operation for FNF using DMC by DAA or PLA. Functional outcome was evaluated using the Harris Hip Score (HHS) and Parker score at three months and one year. Perioperative complications were recorded, and radiological component positioning evaluated. Results. There were 50 patients in the DAA group and 54 in the PLA group. The mean HHS was 85.5 (SD 8.8) for the DAA group and 81.8 (SD 11.9) for the PLA group (p = 0.064). In all, 35 patients in the DAA group and 40 in the PLA group returned to their pre-fracture Parker score (p = 0.641) in both groups. No statistically significant differences between groups were found at one year regarding these two scores (p = 0.062 and p = 0.723, respectively). The DAA was associated with more intraoperative complications (p = 0.013). There was one dislocation in each group, and four revisions for DAA and one for PLA, but this difference was not statistically significant. There were also no significant differences regarding blood loss, length of stay, or operating time. Conclusion. In DMC-THA for FNF, DAA did not achieve better functional results than PLA, either at three months or at one year. Moreover, DAA presented an increased risk of intra-operative complications. Cite this article: Bone Joint J 2024;106-B(5 Supple B):133–138


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1319 - 1323
3 Oct 2020
Khatun F Gill DF Atrey A Porteous M

Aims. We present the results, in terms of survival, clinical outcome, and radiological appearance at 20 years, in a cohort of 225 cemented Exeter Universal femoral components (Stryker, Newbury, UK) implanted in 207 patients, at a district general hospital. Methods. All patients in this study had a total hip arthroplasty (THA) using an Exeter Universal femoral component with a cemented (n = 215) or cementless (n = 10) acetabular component. Clinical and radiological data were collected prospectively at one year, five years, and every five years thereafter. Patients lost to radiological and clinical follow-up (five) were cross-referenced with National Joint Registry (NJR) data and general practitioner (GP) records to assess whether they had undergone revision for any reason. Results. During this period of study 144 patients (157 hips) died (69.78%). Two patients were lost to follow-up, leaving 61 patients (66 hips) available for review (29.33%). Of the 225 hips, three underwent revision for femoral failure with osteolysis. One underwent femoral component revision for treatment of a periprosthetic fracture. Eight underwent revision of the acetabular component only for loosening. Two hips had both components revised, when components were found to be loose at time of revision for acetabular loosening, though no radiological femoral osteolysis. Two patients underwent revision for infection. Using femoral loosening as an endpoint, the survival of the Exeter Universal femoral component was 98.7% (n = 220, 95% confidence interval (CI) 96.1% to 100%) at 20 to 22 years. Survival with an endpoint of revision for any reason was 92.6% (n = 209, 95% CI 89.4 to 95.55), with a ‘worst-case scenario’ (considering two patients lost to follow-up to have failed), the overall survival rate was 91.7% (n = 207, 95% CI 87.8 to 95.9) at 20 to 22 years. Conclusion. Our results confirm excellent long-term results for the cemented Exeter Universal femoral componentimplanted outside of the originating centre. Cite this article: Bone Joint J 2020;102-B(10):1319–1323


Bone & Joint Open
Vol. 2, Issue 10 | Pages 806 - 812
1 Oct 2021
Gerritsen M Khawar A Scheper H van der Wal R Schoones J de Boer M Nelissen R Pijls B

Aims. The aim of this meta-analysis is to assess the association between exchange of modular parts in debridement, antibiotics, and implant retention (DAIR) procedure and outcomes for hip and knee periprosthetic joint infection (PJI). Methods. We conducted a systematic search on PubMed, Embase, Web of Science, and Cochrane library from inception until May 2021. Random effects meta-analyses and meta-regression was used to estimate, on a study level, the success rate of DAIR related to component exchange. Risk of bias was appraised using the (AQUILA) checklist. Results. We included 65 studies comprising 6,630 patients. The pooled overall success after DAIR for PJI was 67% (95% confidence interval (CI) 63% to 70%). This was 70% (95% CI 65% to 75%) for DAIR for hip PJI and 63% (95% CI 58% to 69%) for knee PJI. In studies before 2004 (n = 27), our meta-regression analysis showed a 3.5% increase in success rates for each 10% increase in component exchange in DAIR for hip PJI and a 3.1% increase for each 10% increase in component exchange for knee PJI. When restricted to studies after 2004 (n = 37), this association changed: for DAIR for hip PJI a decrease in successful outcome by 0.5% for each 10% increase in component exchange and for DAIR for knee PJI this was a 0.01% increase in successful outcome for each 10% increase in component exchange. Conclusion. This systematic review and meta-regression found no benefit of modular component exchange on reduction of PJI failure. This limited effect should be weighed against the risks for the patient and cost on a case-by-case basis. The association between exchange of modular components and outcome changed before and after 2004. This suggests the effect seen after 2004 may reflect a more rigorous, evidence-based, approach to the infected implant compared to the years before. Level of Evidence: Level III. Cite this article: Bone Jt Open 2021;2(10):806–812


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 165 - 170
1 Jun 2021
Larson DJ Rosenberg JH Lawlor MA Garvin KL Hartman CW Lyden E Konigsberg BS

Aims. Stemmed tibial components are frequently used in revision total knee arthroplasty (TKA). The purpose of this study was to evaluate patient satisfaction, overall pain, and diaphyseal tibial pain in patients who underwent revision TKA with cemented or uncemented stemmed tibial components. Methods. This is a retrospective cohort study involving 110 patients with revision TKA with cemented versus uncemented stemmed tibial components. Patients who underwent revision TKA with stemmed tibial components over a 15-year period at a single institution with at least two-year follow-up were assessed. Pain was evaluated through postal surveys. There were 63 patients with cemented tibial stems and 47 with uncemented stems. Radiographs and Knee Society Scores were used to evaluate for objective findings associated with pain or patient dissatisfaction. Postal surveys were analyzed using Fisher’s exact test and the independent-samples t-test. Logistic regression was used to adjust for age, sex, and preoperative bone loss. Results. No statistically significant differences in stem length, operative side, or indications for revision were found between the two cohorts. Tibial pain at the end of the stem was present in 25.3% (16/63) of cemented stems and 25.5% (12/47) of uncemented stems (p = 1.000); 74.6% (47/63) of cemented patients and 78.7% (37/47) of uncemented patients were satisfied following revision TKA (p = 0.657). Conclusion. There were no differences in patient satisfaction, overall pain, and diaphyseal tibial pain in cemented and uncemented stemmed tibial components in revision TKA. Patient factors, rather than implant selection and surgical technique, likely play a large role in the presence of postoperative pain. Stemmed tibial components have been shown to be a possible source of pain in revision TKA. There is no difference in patient satisfaction or postoperative pain with cemented or uncemented stemmed tibial components in revision TKA. Cite this article: Bone Joint J 2021;103-B(6 Supple A):165–170


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 124 - 134
1 Feb 2023
Jain S Farook MZ Aslam-Pervez N Amer M Martin DH Unnithan A Middleton R Dunlop DG Scott CEH West R Pandit H

Aims. The aim of this study was to compare open reduction and internal fixation (ORIF) with revision surgery for the surgical management of Unified Classification System (UCS) type B periprosthetic femoral fractures around cemented polished taper-slip femoral components following primary total hip arthroplasty (THA). Methods. Data were collected for patients admitted to five UK centres. The primary outcome measure was the two-year reoperation rate. Secondary outcomes were time to surgery, transfusion requirements, critical care requirements, length of stay, two-year local complication rates, six-month systemic complication rates, and mortality rates. Comparisons were made by the form of treatment (ORIF vs revision) and UCS type (B1 vs B2/B3). Kaplan-Meier survival analysis was performed with two-year reoperation for any reason as the endpoint. Results. A total of 317 periprosthetic fractures (in 317 patients) with a median follow-up of 3.6 years (interquartile range (IQR) 2.0 to 5.4) were included. The fractures were type B1 in 133 (42.0%), B2 in 170 (53.6%), and B3 in 14 patients (4.4%). ORIF was performed in 167 (52.7%) and revision in 150 patients (47.3%). The two-year reoperation rate (15.3% vs 7.2%; p = 0.021), time to surgery (4.0 days (IQR 2.0 to 7.0) vs 2.0 days (IQR 1.0 to 4.0); p < 0.001), transfusion requirements (55 patients (36.7%) vs 42 patients (25.1%); p = 0.026), critical care requirements (36 patients (24.0%) vs seven patients (4.2%); p < 0.001) and two-year local complication rates (26.7% vs 9.0%; p < 0.001) were significantly higher in the revision group. The two-year rate of survival was significantly higher for ORIF (91.9% (standard error (SE) 0.023%) vs 83.9% (SE 0.031%); p = 0.032) compared with revision. For B1 fractures, the two-year reoperation rate was significantly higher for revision compared with ORIF (29.4% vs 6.0%; p = 0.002) but this was similar for B2 and B3 fractures (9.8% vs 13.5%; p = 0.341). The most common indication for reoperation after revision was dislocation (12 patients; 8.0%). Conclusion. Revision surgery has higher reoperation rates, longer surgical waiting times, higher transfusion requirements, and higher critical care requirements than ORIF in the management of periprosthetic fractures around polished taper-slip femoral components after THA. ORIF is a safe option providing anatomical reconstruction is achievable. Cite this article: Bone Joint J 2023;105-B(2):124–134


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 668 - 678
1 Jun 2023
Friedman RJ Boettcher ML Grey S Flurin P Wright TW Zuckerman JD Eichinger JK Roche C

Aims. The aim of this study was to longitudinally compare the clinical and radiological outcomes of anatomical total shoulder arthroplasty (aTSA) up to long-term follow-up, when using cemented keel, cemented peg, and hybrid cage peg glenoid components and the same humeral system. Methods. We retrospectively analyzed a multicentre, international clinical database of a single platform shoulder system to compare the short-, mid-, and long-term clinical outcomes associated with three designs of aTSA glenoid components: 294 cemented keel, 527 cemented peg, and 981 hybrid cage glenoids. Outcomes were evaluated at 4,746 postoperative timepoints for 1,802 primary aTSA, with a mean follow-up of 65 months (24 to 217). Results. Relative to their preoperative condition, each glenoid cohort had significant improvements in clinical outcomes from two years to ten years after surgery. Patients with cage glenoids had significantly better clinical outcomes, with higher patient-reported outcome scores and significantly increased active range of motion, compared with those with keel and peg glenoids. Those with cage glenoids also had significantly fewer complications (keel: 13.3%, peg: 13.1%, cage: 7.4%), revisions (keel: 7.1%, peg 9.7%, cage 3.5%), and aseptic glenoid loosening and failure (keel: 4.7%, peg: 5.8%, cage: 2.5%). Regarding radiological outcomes, 70 patients (11.2%) with cage glenoids had glenoid radiolucent lines (RLLs). The cage glenoid RLL rate was 3.3-times (p < 0.001) less than those with keel glenoids (37.3%) and 4.6-times (p < 0.001) less than those with peg glenoids (51.2%). Conclusion. These findings show that good long-term clinical and radiological outcomes can be achieved with each of the three aTSA designs of glenoid component analyzed in this study. However, there were some differences in clinical and radiological outcomes: generally, cage glenoids performed best, followed by cemented keel glenoids, and finally cemented peg glenoids. Cite this article: Bone Joint J 2023;105-B(6):668–678


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 423 - 429
1 Mar 2021
Diez-Escudero A Hailer NP

Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article: Bone Joint J 2021;103-B(3):423–429


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 66 - 72
1 Jul 2021
Hernandez NM Hinton ZW Wu CJ Lachiewicz PF Ryan SP Wellman SS

Aims. Modular dual mobility (MDM) acetabular components are often used with the aim of reducing the risk of dislocation in revision total hip arthroplasty (THA). There is, however, little information in the literature about its use in this context. The aim of this study, therefore, was to evaluate the outcomes in a cohort of patients in whom MDM components were used at revision THA, with a mean follow-up of more than five years. Methods. Using the database of a single academic centre, 126 revision THAs in 117 patients using a single design of an MDM acetabular component were retrospectively reviewed. A total of 94 revision THAs in 88 patients with a mean follow-up of 5.5 years were included in the study. Survivorship was analyzed with the endpoints of dislocation, reoperation for dislocation, acetabular revision for aseptic loosening, and acetabular revision for any reason. The secondary endpoints were surgical complications and the radiological outcome. Results. The overall rate of dislocation was 11%, with a six-year survival of 91%. Reoperation for dislocation was performed in seven patients (7%), with a six-year survival of 94%. The dislocations were early (at a mean of 33 days) in six patients, and late (at a mean of 4.3 years) in four patients. There were three intraprosthetic dissociations. An outer head diameter of ≥ 48 mm was associated with a lower risk of dislocation (p = 0.013). Lumbrosacral fusion was associated with increased dislocation (p = 0.004). Four revision THAs (4%) were further revised for aseptic acetabular loosening, and severe bone loss (Paprosky III) at the time of the initial revision was significantly associated with further revision for aseptic acetabular loosening (p = 0.008). Fourteen acetabular components (15%) were re-revised for infection, and a pre-revision diagnosis of reimplantation after periprosthetic joint infection (PJI) was associated with subsequent PJI (p < 0.001). Two THAs had visible metallic changes on the backside of the cobalt chromium liner. Conclusion. When using this MDM component in revision THA, at a mean follow-up of 5.5 years, there was a higher rate of dislocation (11%) than previously reported. The size of the outer bearing was related to the risk of dislocation. There was a low rate of aseptic acetabular loosening. Longer follow-up of this MDM component and evaluation of other designs are warranted. Cite this article: Bone Joint J 2021;103-B(7 Supple B):66–72


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1783 - 1790
1 Dec 2021
Montgomery S Bourget-Murray J You DZ Nherera L Khoshbin A Atrey A Powell JN

Aims. Total hip arthroplasty (THA) with dual-mobility components (DM-THA) has been shown to decrease the risk of dislocation in the setting of a displaced neck of femur fracture compared to conventional single-bearing THA (SB-THA). This study assesses if the clinical benefit of a reduced dislocation rate can justify the incremental cost increase of DM-THA compared to SB-THA. Methods. Costs and benefits were established for patients aged 75 to 79 years over a five-year time period in the base case from the Canadian Health Payer’s perspective. One-way and probabilistic sensitivity analysis assessed the robustness of the base case model conclusions. Results. DM-THA was found to be cost-effective, with an estimated incremental cost-effectiveness ratio (ICER) of CAD $46,556 (£27,074) per quality-adjusted life year (QALY). Sensitivity analysis revealed DM-THA was not cost-effective across all age groups in the first two years. DM-THA becomes cost-effective for those aged under 80 years at time periods from five to 15 years, but was not cost-effective for those aged 80 years and over at any timepoint. To be cost-effective at ten years in the base case, DM-THA must reduce the risk of dislocation compared to SB-THA by at least 62%. Probabilistic sensitivity analysis showed DM-THA was 58% likely to be cost-effective in the base case. Conclusion. Treating patients with a displaced femoral neck fracture using DM-THA components may be cost-effective compared to SB-THA in patients aged under 80 years. However, future research will help determine if the modelled rates of adverse events hold true. Surgeons should continue to use clinical judgement and consider individual patients’ physiological age and risk factors for dislocation. Cite this article: Bone Joint J 2021;103-B(12):1783–1790


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits. Results. The patient cohort mean age was 66 years (SD seven years), 59% were female, and the mean BMI was 32 kg/m. 2. (SD 6 kg/m. 2. ). Mean two-year subsidence of the EF-TKA was 0.056 mm (95% confidence interval (CI) 0.025 to 0.086) versus 0.006 mm (95% CI -0.029 to 0.040) for the Std-TKA, and the two-year maximum total point motion (MTPM) was 0.285 mm (95% upper confidence limit (UCL) ≤ 0.363) versus 0.346 mm (95% UCL ≤ 0.432), respectively, for a mean difference of -0.061 mm (95% CI -0.196 to 0.074). Inducible displacement also did not differ between groups. The MTPMs between 12 and 24 months for each group was below the published threshold of 0.2 mm for predicting early aseptic loosening (p < 0.001 and p = 0.001, respectively). Conclusion. Both the enhanced fixation and the standard tibial implant design showed fixation with a predicted low risk of long-term aseptic loosening. Cite this article: Bone Jt Open 2024;5(1):20–27


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1604 - 1610
1 Oct 2021
Takaoka Y Goto K Tamura J Okuzu Y Kawai T Kuroda Y Orita K Matsuda S

Aims. We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive. Methods. We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of HXLPE cemented acetabular components with femoral stems made of titanium alloy. Kaplan-Meier survival analysis was performed for the primary endpoint of acetabular component revision surgery for any reason and secondary endpoint of the appearance of RLLs. RLLs that had appeared once were observed over time. We statistically assessed potential relationships between RLLs and a number of factors, including the technique of femoral head autografting and the Japanese Orthopaedic Association score. Results. The mean follow-up period was 13.0 years (10.0 to 16.3). Femoral head autografting was performed on 135 hips (72.2%). One acetabular component was retrieved because of deep infection. No revision was performed for the aseptic acetabular loosening. The Kaplan-Meier survival curve for the primary and secondary endpoints were 98.2% (95% confidence interval (CI) 88.6% to 99.8%) and 79.3% (95% CI 72.8% to 84.6%), respectively. RLLs were detected in 38 hips (21.2%), at a mean of 1.7 years (1 month to 6 years) postoperatively. None of the RLLs were progressive, and the presence of RLLs did not show a significant association with the survival and clinical score. RLLs were more frequently observed in hips without femoral head autografts than in those with autografts. Conclusion. The use of HXLPE cemented acetabular components in total hip arthroplasty demonstrated excellent clinical outcomes after ten years, and no RLLs were progressive, and their presence did not affect the outcome. Femoral head autografting did not negatively impact the acetabular component survival or the appearance of RLLs. Cite this article: Bone Joint J 2021;103-B(10):1604–1610


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 327 - 332
1 Mar 2009
García-Rey E García-Cimbrelo E Cordero-Ampuero J

We reviewed 111 hemispherical Duraloc series-500 acetabular components with a minimum follow-up of 12 years. The mean clinical and radiological follow-up was 13.4 years (12 to 15). A Profile hydroxyapatite-coated anatomical femoral component was used in each case. Six patients had a late dislocation, for whom the polyethylene liner was exchanged. Each acetabular component was well fixed and all femoral components showed signs of bone ingrowth. The mean rate of femoral head penetration was 0.10 mm/year (0.021 to 0.481). The probability of not developing femoral cortical hypertrophy and proximal osteopenia by 12 years was 80.2% (95% confidence interval, 72.7 to 87.6) and 77.5% (95% confidence interval, 69.7 to 85.2), respectively. Despite these good clinical results, further follow-up is needed to determine whether these prostheses will loosen with time


Bone & Joint Open
Vol. 2, Issue 11 | Pages 921 - 925
9 Nov 2021
Limberg AK Wyles CC Taunton MJ Hanssen AD Pagnano MW Abdel MP

Aims. Varus-valgus constrained (VVC) devices are typically used in revision settings, often with stems to mitigate the risk of aseptic loosening. However, in at least one system, the VVC insert is compatible with the primary posterior-stabilized (PS) femoral component, which may be an option in complex primary situations. We sought to determine the implant survivorship, radiological and clinical outcomes, and complications when this VVC insert was coupled with a PS femur without stems in complex primary total knee arthroplasties (TKAs). Methods. Through our institution’s total joint registry, we identified 113 primary TKAs (103 patients) performed between 2007 and 2017 in which a VVC insert was coupled with a standard cemented PS femur without stems. Mean age was 68 years (SD 10), mean BMI was 32 kg/m. 2. (SD 7), and 59 patients (50%) were male. Mean follow-up was four years (2 to 10). Results. The five-year survivorship free from aseptic loosening was 100%. The five-year survivorship free from any revision was 99%, with the only revision performed for infection. The five-year survivorship free from reoperation was 93%. The most common reoperation was treatment for infection (n = 4; 4%), followed by manipulation under anaesthesia (MUA; n = 2; 2%). Survivorship free from any complication at five years was 90%, with superficial wound infection as the most frequent (n = 4; 4%). At most recent follow-up, two TKAs had non-progressive radiolucent lines about both the tibial and femoral components. Knee Society Scores improved from 53 preoperatively to 88 at latest follow-up (p < 0.001). Conclusion. For complex primary TKA in occasional situations, coupling a VVC insert with a standard PS femur without stems proved reliable and durable at five years. Longer-term follow-up is required before recommending this technique more broadly. Cite this article: Bone Jt Open 2021;2(11):921–925


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 123 - 128
1 Jun 2020
Martin JR Geary MB Ransone M Macknet D Fehring K Fehring T

Aims. Aseptic loosening of the tibial component is a frequent cause of failure in primary total knee arthroplasty (TKA). Management options include an isolated tibial revision or full component revision. A full component revision is frequently selected by surgeons unfamiliar with the existing implant or who simply wish to “start again”. This option adds morbidity compared with an isolated tibial revision. While isolated tibial revision has a lower morbidity, it is technically more challenging due to difficulties with exposure and maintaining prosthetic stability. This study was designed to compare these two reconstructive options. Methods. Patients undergoing revision TKA for isolated aseptic tibial loosening between 2012 and 2017 were identified. Those with revision implants or revised for infection, instability, osteolysis, or femoral component loosening were excluded. A total of 164 patients were included; 88 had an isolated tibial revision and 76 had revision of both components despite only having a loose tibial component. The demographics and clinical and radiological outcomes were recorded. Results. The patient demographics were statistically similar in the two cohorts. The median follow-up was 3.5 years (interquartile range (IQR) 1 to 12.5). Supplementary femoral metaphyseal fixation was required in five patients in the full revision cohort. There was a higher incidence of radiological tibial loosening in the full component revision cohort at the final follow-up (8 (10.5%) vs 5 (5.7%); p = 0.269). Three patients in the full component revision cohort developed instability while only one in the isolated tibial cohort did. Three patients in the full revision cohort developed a flexion contracture greater than 5° while none in the isolated tibial cohort did. Conclusion. Isolated tibial revision for aseptic tibial loosening has statistically similar clinical and radiological outcomes at a median follow-up of 3.5 years, when compared with full component revision. Substantial bone loss can occur when removing a well-fixed femoral component necessitating a cone or sleeve. Femoral component revision for isolated tibial loosening can frequently be avoided provided adequate ligamentous stability can be obtained. Cite this article: Bone Joint J 2020;102-B(6 Supple A):123–128


Bone & Joint Research
Vol. 11, Issue 5 | Pages 252 - 259
1 May 2022
Cho BW Kang K Kwon HM Lee W Yang IH Nam JH Koh Y Park KK

Aims. This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). Methods. 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed. Results. The distance from the distal stem tip to the shortest cortical bone showed no statistically significant difference between implants. However, the peak von Mises stress around the distal stem tip was higher with STC than with ATC. In the medial half of the proximal tibial bone: 1) the mean von Mises stress, maximum principal strain, and minimum principal strain were higher with ATC; 2) ATC showed a positive correlation between the distance and mean von Mises stress; 3) ATC showed a negative correlation between the distance and mean minimum principal strain; and 4) STC showed no correlation between the distance and mean measurements. Conclusion. Implant design affects the load distribution on the periprosthetic tibial bone, and ATC can be more advantageous in preventing stress-shielding than STC. However, under certain circumstances with short distances, the advantage of ATC may be offset. Cite this article: Bone Joint Res 2022;11(5):252–259


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 591 - 594
1 May 2007
Lie SA Hallan G Furnes O Havelin LI Engesæter LB

We analysed the results of different strategies in the revision of primary uncemented acetabular components reported to the Norwegian Arthroplasty Register. The aim was to compare the risk of further acetabular revision after isolated liner exchange and complete component revision. The results of exchanging well-fixed components were also compared with those of exchanging loose acetabular components. The period studied was between September 1987 and April 2005. The following groups were compared: group 1, exchange of liner only in 318 hips; group 2, exchange of well-fixed components in 398; and group 3, exchange of loose components in 933. We found that the risk of a further cup revision was lower after revision of well-fixed components (relative risk from a Cox model (RR) = 0.56, 95% confidence interval 0.37% to 0.87%) and loose components (RR = 0.56, 95% confidence interval 0.39% to 0.80%), compared with exchange of the liner in isolation. The most frequent reason for a further acetabular revision was dislocation, accounting for 61 (28%) of the re-revisions. Other reasons for further revision included pain in 27 (12%), loosening in 24 (11%) and infection in 20 (9%). Re-revisions because of pain were less frequent when complete component (fixed or loose) revision was undertaken compared with isolated exchange of the liner (RR = 0.20 (95% confidence interval 0.06% to 0.65%) and RR = 0.10 (95% confidence interval 0.03% to 0.30%), respectively). The risk of further acetabular revision for infection, however, did not differ between the groups. In this study, exchange of the liner only had a higher risk of further cup revision than revision of the complete acetabular component. Our results suggest that the threshold for revising well-fixed components in the case of liner wear and osteolysis should be lowered


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 76 - 82
1 Jan 2022
ten Brinke B Hesseling B Eygendaal D Hoelen MA Mathijssen NMC

Aims. Stemless humeral implants have been developed to overcome stem-related complications in total shoulder arthroplasty (TSA). However, stemless implant designs may hypothetically result in less stable initial fixation, potentially affecting long-term survival. The aim of this study is to investigate early fixation and migration patterns of the stemless humeral component of the Simpliciti Shoulder System and to evaluate clinical outcomes. Methods. In this prospective cohort study, radiostereometric analysis (RSA) radiographs were obtained in 24 patients at one day, six weeks, six months, one year, and two years postoperatively. Migration was calculated using model-based RSA. Clinical outcomes were evaluated using the visual analogue scale (VAS), the Oxford Shoulder Score (OSS), the Constant-Murley Score (CMS), and the Disabilities of the Arm, Shoulder and Hand (DASH) score. Results. At two years, median translation along the x-, y-, and z-axis was -0.12 mm (interquartile range (IQR) -0.18 to 0.02), -0.17 mm (IQR -0.27 to -0.09), and 0.09 mm (IQR 0.02 to 0.31). Median rotation around the x-, y-, and z-axis was 0.12° (IQR -0.50 to 0.57), -0.98° (IQR -1.83 to 1.23), and 0.09° (IQR -0.76 to 0.30). Overall, 20 prostheses stabilized within 12 months postoperatively. Four prostheses showed continuous migration between 12 and 24 months. At two-year follow-up, with the exception of one revised prosthesis, all clinical scores improved significantly (median VAS difference at rest: -3.0 (IQR -1.5 to -6.0); OSS 22.0 (IQR 15.0 to 25.0); CMS 29.5 (IQR 15.0 to 35.75); and DASH -30.0 (IQR -20.6 to -41.67) (all p < 0.001)) with the exception of one revised prosthesis. Conclusion. In conclusion, we found that 20 out of 24 implants stabilized within 12 months postoperatively. The significance of continuous migration in four implants is unclear and future research on the predictive value of early migration for future loosening in TSA is required. Clinical results revealed a clinically relevant improvement. Cite this article: Bone Joint J 2022;104-B(1):76–82


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 801 - 810
1 Jul 2022
Krull P Steinbrück A Grimberg AW Melsheimer O Morlock M Perka C

Aims. Registry studies on modified acetabular polyethylene (PE) liner designs are limited. We investigated the influence of standard and modified PE acetabular liner designs on the revision rate for mechanical complications in primary cementless total hip arthroplasty (THA). Methods. We analyzed 151,096 primary cementless THAs from the German Arthroplasty Registry (EPRD) between November 2012 and November 2020. Cumulative incidence of revision for mechanical complications for standard and four modified PE liners (lipped, offset, angulated/offset, and angulated) was determined using competing risk analysis at one and seven years. Confounders were investigated with a Cox proportional-hazards model. Results. Median follow-up was 868 days (interquartile range 418 to 1,364). The offset liner design reduced the risk of revision (hazard ratio (HR) 0.68 (95% confidence interval (CI) 0.50 to 0.92)), while the angulated/offset liner increased the risk of revision for mechanical failure (HR 1.81 (95% CI 1.38 to 2.36)). The cumulative incidence of revision was lowest for the offset liner at one and seven years (1.0% (95% CI 0.7 to 1.3) and 1.8% (95% CI 1.0 to 3.0)). No difference was found between standard, lipped, and angulated liner designs. Higher age at index primary THA and an Elixhauser Comorbidity Index greater than 0 increased the revision risk in the first year after surgery. Implantation of a higher proportion of a single design of liner in a hospital reduced revision risk slightly but significantly (p = 0.001). Conclusion. The use of standard acetabular component liners remains a good choice in primary uncemented THA, as most modified liner designs were not associated with a reduced risk of revision for mechanical failure. Offset liner designs were found to be beneficial and angulated/offset liner designs were associated with higher risks of revision. Cite this article: Bone Joint J 2022;104-B(7):801–810


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 299 - 304
1 Feb 2021
Goto E Umeda H Otsubo M Teranishi T

Aims. Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large acetabular bone defect. The aim of this study was to evaluate the long-term clinical results of patients in whom anatomical reconstruction of the acetabulum was performed using a cemented acetabular component and autologous bone graft from the femoral neck. Methods. A total of 22 patients with Crowe type III dislocated hips underwent 28 THAs using bone graft from the femoral neck between 1979 and 2000. A Charnley cemented acetabular component was placed at the level of the true acetabulum after preparation with bone grafting. All patients were female with a mean age at the time of surgery of 54 years (35 to 68). A total of 18 patients (21 THAs) were followed for a mean of 27.2 years (20 to 33) after the operation. Results. Radiographs immediately after surgery showed a mean vertical distance from the centre of the hip to the teardrop line of 21.5 mm (SD 3.3; 14.5 to 30.7) and a mean cover of the acetabular component by bone graft of 46% (SD 6%; 32% to 60%). All bone grafts united without collapse, and only three acetabular components loosened. The rate of survival of the acetabular component with mechanical loosening or revision as the endpoint was 86.4% at 25 years after surgery. Conclusion. The technique of using autologous bone graft from the femoral neck and placing a cemented acetabular component in the true acetabulum can provide good long-term outcomes in patients with Crowe type III dislocated hips. Cite this article: Bone Joint J 2021;103-B(2):299–304


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 94 - 101
1 Jun 2021
Roy ME Whiteside LA Ly KK Gauvain MJ

Aims. The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components. Methods. Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a knee wear simulator. We developed a method of measuring surface changes on five CoCr femoral components and quantifying the loss of material from the articular surface during the wear process. We also examined the articular surface of three ceramic femoral components from a previous test for evidence of surface damage, and compared it with that of CoCr components. Results. We found that the surface roughness of CoCr components rapidly increased during the first 1,000 wear cycles, then reached a steady state, but material loss from the surface continued at a rate of 1,778,000 μm. 3. per million cycles as carbides were removed from its matrix. These carbides formed third-body wear particles, leading to the formation of new scratches even as older scratches were worn away. In contrast, no scratching, loss of material, or other surface damage, when evaluated with one nanometer resolution, was found on the surface of the ceramic components after a 15 M wear cycle test. Conclusion. This study showed wear and loss of CoCr material from scratching and microabrasive wear in TKA. The material loss from the surface continued in a linear relationship with increasing cycles. We also found the absence of scratching and roughening of ceramic femoral components in simulated wear, suggesting an advantage in wear rate and avoiding metal sensitivity. This may have implications in the management of persistent pain after TKA. Cite this article: Bone Joint J 2021;103-B(6 Supple A):94–101


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 855 - 863
1 May 2021
Koster LA Meinardi JE Kaptein BL Van der Linden - Van der Zwaag E Nelissen RGHH

Aims. The objective of this study was to compare the two-year migration pattern and clinical outcomes of a total knee arthroplasty (TKA) with an asymmetrical tibial design (Persona PS) and a well-proven TKA with a symmetrical tibial design (NexGen LPS). Methods. A randomized controlled radiostereometric analysis (RSA) trial was conducted including 75 cemented posterior-stabilized TKAs. Implant migration was measured with RSA. Maximum total point motion (MTPM), translations, rotations, clinical outcomes, and patient-reported outcome measures (PROMs) were assessed at one week postoperatively and at three, six, 12, and 24 months postoperatively. Results. A linear mixed-effect model using RSA data of 31 asymmetrical and 38 symmetrical TKAs did not show a difference in mean MTPM migration pattern of the tibial or femoral components. Mean tibial component MTPM at two years postoperative of the asymmetrical TKA design was 0.93 mm and 1.00 mm for the symmetrical design. For the femoral component these values were 1.04 mm and 1.14 mm, respectively. No significant differences were observed in other migration parameters or in clinical and PROM measurements. Conclusion. The TKA design with an asymmetrical tibial component has comparable component migration with the proven TKA with a symmetrical tibial component. This suggests the risk of long-term aseptic loosening of the two designs is comparable. Cite this article: Bone Joint J 2021;103-B(5):855–863


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 338 - 346
1 Feb 2021
Khow YZ Liow MHL Lee M Chen JY Lo NN Yeo SJ

Aims. This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA. Methods. Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups. Results. Significant two-way interaction effects between TCCA and FCCA were identified. Adjusted for each other and their interaction, a TCCA of between 2° and 4° and a FCCA of between 0° and 2° were found to be associated with the greatest improvements in knee scores and the probability of fulfilling expectations and satisfaction at ten years. Patients in the optimal group whose TCCA and FCCA were between 2° and 4°, and 0° and 2°, respectively, had a significant survival benefit at 15 years compared with the non-optimal group (optimal: survival = 100% vs non-optimal: survival = 92%, 95% confidence interval (CI) 88% to 96%). Conclusion. Significant two-way interactions between the TCCA and FCCA demonstrate the importance of evaluating the alignment of the components concomitantly in future studies. By doing so, we found that patients who concomitantly had both a TCCA of between 2° and 4° and a FCCA of between 0° and 2° had the best patient-reported outcome measures at ten years and better survivorship at 15 years. Cite this article: Bone Joint J 2021;103-B(2):338–346


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching technique with small measurement errors compared to visual evaluations regardless of the pelvic tilt or rotation. Cite this article: Bone Joint Res 2020;9(7):360–367


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 709 - 715
1 Jun 2020
Abdelsamie KR Elhawary I Ali H Ali M EL-Shafie M Dominic Meek RM

Aims. Femoral revision component subsidence has been identified as predicting early failure in revision hip surgery. This comparative cohort study assessed the potential risk factors of subsidence in two commonly used femoral implant designs. Methods. A comparative cohort study was undertaken, analyzing a consecutive series of patients following revision total hip arthroplasties using either a tapered-modular (TM) fluted titanium or a porous-coated cylindrical modular (PCM) titanium femoral component, between April 2006 and May 2018. Clinical and radiological assessment was compared for both treatment cohorts. Risk factors for subsidence were assessed and compared. Results. In total, 65 TM and 35 PCM cases were included. At mean follow-up of seven years (1 to 13), subsidence was noted in both cohorts during the initial three months postoperatively (p < 0.001) then implants stabilized. Subsidence noted in 58.7% (38/65 cases) of the TM cohort (mean 2.3 mm, SD 3.5 mm) compared to 48.8% (17/35) of PCM cohort (mean 1.9 mm, SD 2.6 mm; p = 0.344). Subsidence of PCM cohort were significantly associated with extended trochanteric osteotomy (ETO) (p < 0.041). Although the ETO was used less frequently in PCM stem cohort (7/35), subsidence was noted in 85% (6/7) of them. Significant improvement of the final mean Oxford Hip Score (OHS) was reported in both treatment groups (p < 0.001). Conclusion. Both modular TM and PCM revision femoral components subsided within the femur. TM implants subsided more frequently than PCM components if the femur was intact but with no difference in clinical outcomes. However, if an ETO is performed then a PCM component will subside significantly more and suggests the use of a TM implant may be advisable. Cite this article: Bone Joint J 2020;102-B(6):709–715


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 170 - 176
1 Feb 2020
Bernthal NM Burke ZDC Hegde V Upfill-Brown A Chen CJ Hwang R Eckardt JJ

Aims. We aimed to examine the long-term mechanical survivorship, describe the modes of all-cause failure, and identify risk factors for mechanical failure of all-polyethylene tibial components in endoprosthetic reconstruction. Methods. This is a retrospective database review of consecutive endoprosthetic reconstructions performed for oncological indications between 1980 and 2019. Patients with all-polyethylene tibial components were isolated and analyzed for revision for mechanical failure. Outcomes included survival of the all-polyethylene tibial component, revision surgery categorized according to the Henderson Failure Mode Classification, and complications and functional outcome, as assessed by the Musculoskeletal Tumor Society (MSTS) score at the final follow-up. Results. A total of 278 patients were identified with 289 all-polyethylene tibial components. Mechanical survival was 98.4%, 91.1%, and 85.2% at five, ten and 15 years, respectively. A total of 15 mechanical failures were identified at the final follow-up. Of the 13 all-polyethylene tibial components used for revision of a previous tibial component, five (38.5%) failed mechanically. Younger patients (< 18 years vs > 18 years; p = 0.005) and those used as revision components (p < 0.001) had significantly increased rates of failure. Multivariate logistic regression modelling showed revision status to be a positive risk factor for failure (odds ratio (OR) 19.498, 95% confidence interval (CI) 4.598 to 82.676) and increasing age was a negative risk factor for failure (OR 0.927, 95% CI 0.872 to 0.987). Age-stratified risk analysis showed that age > 24 years was no longer a statistically significant risk factor for failure. The final mean MSTS score for all patients was 89% (8.5% to 100.0%). Conclusion. The long-term mechanical survivorship of all-polyethylene tibial components when used for tumour endoprostheses was excellent. Tumour surgeons should consider using these components for their durability and the secondary benefits of reduced cost and ease of removal and revision. However, caution should be taken when using all-polyethylene tibial components in the revision setting as a significantly higher rate of mechanical failure was seen in this group of patients. Cite this article: Bone Joint J. 2020;102-B(2):170–176


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 958 - 963
3 May 2021
Nguyen NTV Martinez-Catalan N Songy CE Sanchez-Sotelo J

Aims. The purpose of this study was to report bone adaptive changes after anatomical total shoulder arthroplasty (TSA) using a standard-length hydroxyapatite (HA)-coated humeral component, and to report on a computer-based analysis of radiographs to determine changes in peri-implant bone density objectively. Methods. A total of 44 TSAs, performed between 2011 and 2014 using a cementless standard-length humeral component proximally coated with HA, were included. There were 23 males and 21 females with a mean age of 65 years (17 to 65). All shoulders had good quality radiographs at six weeks and five years postoperatively. Three observers graded bone adaptive changes. All radiographs were uploaded into a commercially available photographic software program. The grey value density of humeral radiological areas was corrected to the grey value density of the humeral component and compared over time. Results. Stress shielding was graded as mild in 14 shoulders and moderate in three; the greater tuberosity was the predominant site for stress shielding. The mean metaphyseal and diaphyseal fill-fit ratios were 0.56 (SD 0.1) and 0.5 (SD 0.07), respectively. For shoulders with no radiologically visible stress shielding, the mean decrease in grey value in zones 1 and 7 was 20%, compared with 38% in shoulders with radiologically visible stress shielding. Conclusion. The rate of moderate stress shielding was 7%, five years after implantation of a cementless standard-length HA-coated humeral component. Clinical observation of stress shielding identified on radiographs seems to represent a decrease in grey value of 25% or more. Cite this article: Bone Joint J 2021;103-B(5):958–963


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 129 - 137
1 Jun 2020
Knowlton CB Lundberg HJ Wimmer MA Jacobs JJ

Aims. A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients. Methods. In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component. Results. Volumetric wear rates on eight non-delaminated components measured 15.9 mm. 3. /year (standard error (SE) ± 7.7) on the total part, 11.4 mm. 3. /year (SE ± 6.4) on the medial side and 4.4 (SE ± 2.6) mm. 3. /year on the lateral side. Volumetric wear rates modelled from patient gait mechanics predicted 16.4 mm. 3. /year (SE 2.4) on the total part, 11.7 mm. 3. /year (SE 2.1) on the medial side and 4.7 mm. 3. /year (SE 0.4) on the lateral side. Measured and modelled wear volumes correlated significantly on the total part (p = 0.017) and the medial side (p = 0.012) but not on the lateral side (p = 0.154). Conclusion. In the absence of delamination, patient-specific knee mechanics during gait directly affect wear of the tibial component in TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):129–137


Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. Methods. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis. Results. RLLs were detected in 27.2% of patients one year postoperatively. In multivariate regression analysis controlling for confounders, atrophic osteoarthritis (odds ratio (OR) 2.17 (95% confidence interval (CI), 1.04 to 4.49); p = 0.038) and 26 mm (OR 3.23 (95% CI 1.85 to 5.66); p < 0.001) or 28 mm head diameter (OR 3.64 (95% CI 2.07 to 6.41); p < 0.001) had a significantly greater risk for any RLLs one year after surgery. Structural bone graft (OR 0.19 (95% CI 0.13 to 0.29) p < 0.001) and location of the hip centre within the true acetabular region (OR 0.15 (95% CI 0.09 to 0.24); p < 0.001) were significantly less prognostic. Improvement of the cement-bone interface including complete disappearance and poorly defined RLLs was identified in 15.1% of patients. Kaplan-Meier survival analysis for the acetabular component at ten years with revision of the acetabular component for aseptic loosening as the end point was 100.0% with a RLL and 99.1% without a RLL (95% CI 97.9 to 100). With revision of the acetabular component for any reason as the end point, the survival rate was 99.2% with a RLL (95% CI 97.6 to 100) and 96.5% without a RLL (95% CI 93.4 to 99.7). Conclusion. This study demonstrates that acetabular bone quality, head diameter, structural bone graft, and hip centre position may influence the presence of the any RLL. Cite this article: Bone Joint Open 2021;2(5):278–292


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 573 - 579
1 May 2020
Krueger DR Guenther K Deml MC Perka C

Aims. We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed. . Methods. All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation. Results. There were 113 recorded cases with fracture at the modular junction, resulting in a calculated fracture rate of 0.30% (113/37,600). The fracture rate of the implant without signs of improper use was 0.11% (41/37,600). In 79% (89/113) of cases with a failed implant, either a lateralized (high offset) neck segment, an extralong head, or the combination of both were used. Logistic regression analysis revealed male sex, high body mass index (BMI), straight component design, and small neck segments were significant risk factors for failure. Investigation of the implants (76/113) showed at least one sign of improper use in 72 cases. Conclusion. Implant failure at the modular junction is associated with patient- and implant-specific risk factors as well as technical errors during implantation. Whenever possible, the use of short and lateralized neck segments should be avoided with this revision system. Implantation instructions and contraindications need to be adhered to and respected. Cite this article: Bone Joint J 2020;102-B(5):573–579


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 252 - 258
1 Mar 1990
Albrektsson B Ryd L Carlsson L Freeman M Herberts P Regner L Selvik G

We studied the effect of a metal tray with an intramedullary stem on the micromotion of the tibial component in total knee arthroplasty. Of 32 uncemented Freeman-Samuelson knee arthroplasties performed in London and Gothenburg, nine had a metal backing and stem added to the tibial component. Micromotion of the tibial components, expressed as migration and inducible displacement, was analysed using roentgen stereophotogrammetric analysis up to two years follow-up. The addition of a metal back and a 110 mm stem to the standard polyethylene component significantly reduced both migration over two years and inducible displacement


Aims. To report early (two-year) postoperative findings from a randomized controlled trial (RCT) investigating disease-specific quality of life (QOL), clinical, patient-reported, and radiological outcomes in patients undergoing a total shoulder arthroplasty (TSA) with a second-generation uncemented trabecular metal (TM) glenoid versus a cemented polyethylene glenoid (POLY) component. Methods. Five fellowship-trained surgeons from three centres participated. Patients aged between 18 and 79 years with a primary diagnosis of glenohumeral osteoarthritis were screened for eligibility. Patients were randomized intraoperatively to either a TM or POLY glenoid component. Study intervals were: baseline, six weeks, six-, 12-, and 24 months postoperatively. The primary outcome was the Western Ontario Osteoarthritis Shoulder QOL score. Radiological images were reviewed for metal debris. Mixed effects repeated measures analysis of variance for within and between group comparisons were performed. Results. A total of 93 patients were randomized (46 TM; 47 POLY). No significant or clinically important differences were found with patient-reported outcomes at 24-month follow-up. Regarding the glenoid components, there were no complications or revision surgeries in either group. Grade 1 metal debris was observed in three (6.5%) patients with TM glenoids at 24 months but outcomes were not negatively impacted. Conclusion. Early results from this RCT showed no differences in disease-specific QOL, radiographs, complication rates, or shoulder function between uncemented second-generation TM and cemented POLY glenoids at 24 months postoperatively. Revision surgeries and reoperations were reported in both groups, but none attributed to glenoid implant failure. At 24 months postoperatively, Grade 1 metal debris was found in 6.5% of patients with a TM glenoid but did not negatively influence patient-reported outcomes. Longer-term follow-up is needed and is underway. Cite this article: Bone Jt Open 2021;2(9):728–736


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1222 - 1230
1 Jul 2021
Slullitel PA Garcia-Barreiro GG Oñativia JI Zanotti G Comba F Piccaluga F Buttaro MA

Aims. We aimed to compare the implant survival, complications, readmissions, and mortality of Vancouver B2 periprosthetic femoral fractures (PFFs) treated with internal fixation with that of B1 PFFs treated with internal fixation and B2 fractures treated with revision arthroplasty. Methods. We retrospectively reviewed the data of 112 PFFs, of which 47 (42%) B1 and 27 (24%) B2 PFFs were treated with internal fixation, whereas 38 (34%) B2 fractures underwent revision arthroplasty. Decision to perform internal fixation for B2 PFFs was based on specific radiological (polished femoral components, intact bone-cement interface) and clinical criteria (low-demand patient). Median follow-up was 36.4 months (24 to 60). Implant survival and mortality over time were estimated with the Kaplan-Meier method. Adverse events (measured with a modified Dindo-Clavien classification) and 90-day readmissions were additionally compared between groups. Results. In all, nine (8.01%) surgical failures were detected. All failures occurred within the first 24 months following surgery. The 24-month implant survival was 95.4% (95% confidence interval (CI) 89.13 to 100) for B1 fractures treated with internal fixation, 90% (95% CI 76.86 to 100) for B2 PFFs treated with osteosynthesis-only, and 85.8% (95% CI 74.24 to 97.36) for B2 fractures treated with revision THA, without significant differences between groups (p = 0.296). Readmissions and major adverse events including mortality were overall high, but similar between groups (p > 0.05). The two-year patient survival rate was 87.1% (95% CI 77.49 to 95.76), 66.7% (95% CI 48.86 to 84.53), and 84.2% (95% CI 72.63 to 95.76), for the B1 group, B2 osteosynthesis group, and B2 revision group, respectively (p = 0.102). Conclusion. Implant survival in Vancouver B2 PFFs treated with internal fixation was similar to that of B1 fractures treated with the same method and to B2 PFFs treated with revision arthroplasty. Low-demand, elderly patients with B2 fractures around well-cemented polished femoral components with an intact bone-cement interface can be safely treated with internal fixation. Cite this article: Bone Joint J 2021;103-B(7):1222–1230


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 71 - 78
1 Jan 2021
Maggs JL Swanton E Whitehouse SL Howell JR Timperley AJ Hubble MJW Wilson MJ

Aims. Periprosthetic fractures (PPFs) around cemented taper-slip femoral prostheses often result in a femoral component that is loose at the prosthesis-cement interface, but where the cement-bone interface remains well-fixed and bone stock is good. We aim to understand how best to classify and manage these fractures by using a modification of the Vancouver classification. Methods. We reviewed 87 PPFs. Each was a first episode of fracture around a cemented femoral component, where surgical management consisted of revision surgery. Data regarding initial injury, intraoperative findings, and management were prospectively collected. Patient records and serial radiographs were reviewed to determine fracture classification, whether the bone cement was well fixed (B2W) or loose (B2L), and time to fracture union following treatment. Results. In total, 47 B2W fractures (54.0%) and one B3 fracture (1.1%) had cement that remained well-fixed at the cement-bone interface. These cases were treated with cement-in-cement (CinC) revision arthroplasty. Overall, 43 fractures with follow-up united, and two patients sustained further fractures secondary to nonunion and required further revision surgery. A total of 19 B2L fractures (21.8%) and 19 B3 fractures (21.8%) had cement that was loose at the cement-bone interface. These cases were managed by revision arthroplasty with either cemented or uncemented femoral components, or proximal femoral arthroplasty. One case could not be classified. Conclusion. We endorse a modification of the original Vancouver system to include a subclassification of B2 fractures around cemented femoral prostheses to include B2W (where cement is well-fixed to bone) and B2L (where the cement is loose). Fractures around taper-slip design stems are more likely to fracture in a B2W pattern compared to fractures around composite beam design stems which are more likely to fracture in a B2L pattern. B2W fractures can reliably be managed with CinC revision. Cite this article: Bone Joint J 2021;103-B(1):71–78


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims

Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA).

Methods

A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 198 - 204
1 Feb 2020
Perlbach R Palm L Mohaddes M Ivarsson I Schilcher J

Aims. This single-centre observational study aimed to describe the results of extensive bone impaction grafting of the whole acetabular cavity in combination with an uncemented component in acetabular revisions performed in a standardized manner since 1993. Methods. Between 1993 and 2013, 370 patients with a median age of 72 years (interquartile range (IQR) 63 to 79 years) underwent acetabular revision surgery. Of these, 229 were more than ten years following surgery and 137 were more than 15 years. All revisions were performed with extensive use of morcellized allograft firmly impacted into the entire acetabular cavity, followed by insertion of an uncemented component with supplementary screw fixation. All types of reoperation were captured using review of radiographs and medical charts, combined with data from the local surgical register and the Swedish Hip Arthroplasty Register. Results. Among patients with possible follow-up of ten and 15 years, 152 and 72 patients remained alive without revision of the acetabular component. The number of deaths was 61 and 50, respectively. Of those who died, six patients in each group had a reoperation performed before death. The number of patients with a reoperation was 22 for those with ten-year follow-up and 21 for those with 15 years of follow-up. The Kaplan-Meier implant survival rate for aseptic loosening among all 370 patients in the cohort was 96.3% (95% confidence interval (CI) 94.1 to 98.5) after ten years and 92.8% (95% CI 89.2 to 96.6) after 15 years. Conclusion. Extensive bone impaction grafting combined with uncemented revision components appears to be a reliable method with favourable long-term survival. This technique offers the advantage of bone stock restoration and disputes the long-standing perception that uncemented components require > 50% of host bone contact for successful implant survival. Cite this article: Bone Joint J 2020;102-B(2):198–204


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. Methods. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system. Results. PT, FCA, ΔPT, and ΔFCA were significantly correlated with the severity of lumbar DDD. Patients with severe lumbar DDD showed marked differences in PT with changes in posture; there was an anterior tilt (-16.6° vs -12.3°, p = 0.047) in the supine position, but a posterior tilt in an upright posture (1.0° vs -3.6°, p = 0.005). A significant decrease in ΔFCA during stand-to-swing (8.6° vs 12.8°, p = 0.038) and stand-to-stance (7.3° vs 10.6°,p = 0.042) was observed in the severe lumbar DDD group. Conclusion. There were marked differences in the relationship between PT and posture in patients with severe lumbar DDD compared with healthy controls. Clinical decision-making should consider the relationship between PT and FCA in order to reduce the risk of impingement at large ranges of motion in THA patients with lumbar DDD. Cite this article: Bone Joint J 2020;102-B(11):1505–1510


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 435 - 442
1 Apr 2019
Zambianchi F Franceschi G Rivi E Banchelli F Marcovigi A Nardacchione R Ensini A Catani F

Aims. The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Patients and Methods. Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded. Results. Following exclusions and losses to follow-up, 334 medial robotic-arm assisted UKAs were assessed at a mean follow-up of 30.0 months (8.0 to 54.9). None of the measured parameters were associated with overall KOOS outcome. Correlations were described between specific KOOS subscales and intraoperative, post-implantation robotic data, and between FJS-12 and femoral component sagittal alignment. Three UKAs were revised, resulting in 99.0% survival at two years (95% confidence interval (CI) 97.9 to 100.0). Conclusion. Although little correlation was found between intraoperative robotic data and overall clinical outcome, surgeons should consider information regarding 3D component placement and soft-tissue balancing to improve patient satisfaction. Reproducible and precise placement of components has been confirmed as essential for satisfactory clinical outcome. Cite this article: Bone Joint J 2019;101-B:435–442


Bone & Joint Open
Vol. 1, Issue 10 | Pages 653 - 662
20 Oct 2020
Rahman L Ibrahim MS Somerville L Teeter MG Naudie DD McCalden RW

Aims. To compare the in vivo long-term fixation achieved by two acetabular components with different porous ingrowth surfaces using radiostereometric analysis (RSA). Methods. This was a minimum ten-year follow-up of a prospective randomized trial of 62 hips with two different porous ingrowth acetabular components. RSA exams had previously been acquired through two years of follow-up. Patients returned for RSA examination at a minimum of ten years. In addition, radiological appearance of these acetabular components was analyzed, and patient-reported outcome measures (PROMs) obtained. Results. In all, 15 hips were available at ten years. There was no statistically significant difference in PROMS between the two groups; PROMs were improved at ten years compared to preoperative scores. Conventional radiological assessment revealed well-fixed components. There was minimal movement for both porous surfaces in translation (X, Y, Z, 3D translation in mm (median and interquartile range (IQR)), StikTite (Smith and Nephew, Memphis, Tennessee, USA): 0.03 (1.08), 0.12 (0.7), 0.003 (2.3), 0.37 (0.30), and Roughcoat (Smith and Nephew): -0.6 (0.59),–0.1 (0.49), 0.1 (1.12), 0.48 (0.38)), and rotation (X, Y, Z rotation in degrees (median and IQR), (Stiktite: -0.4 (3), 0.28 (2), -0.2 (1), and Roughcoat: - 0.4 (1),–0.1 (1), 0.2 (2)). There was no statistically significant difference between the two cohorts (p-value for X, Y, Z, 3D translation - 0.54, 0.46, 0.87, 0.55 and for X, Y, Z rotation - 0.41, 0.23, 0.23 respectively) at ten years. There was significant correlation between two years and ten years 3D translation for all components (r = 0.81(p =< 0.001)). Conclusion. Both porous ingrowth surfaces demonstrated excellent fixation on plain radiographs and with RSA at ten years. Short-term RSA data are good predictors for long-term migration data


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims. The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle. Patients and Methods. We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear. Results. The mean anteversion angle was 19.4° (-15.2° to 48°, . sd. 11.4°), the mean inclination angle 43.4° (27.3° to 60.5°, . sd. 6.6°), and the mean wear rate 0.055 mm/year (. sd. 0.060). Exactly half of the hips were positioned inside the ‘safe zone’. There was no difference (median difference, 0.012 mm/year; p = 0.091) in the rate of wear between acetabular components located within or outside the ‘safe zone’. When compared to acetabular components located inside the ‘safe zone’, the wear rate was no different for acetabular components that only achieved the target anteversion angle (median difference, 0.012 mm/year; p = 0.138), target inclination angle (median difference, 0.013 mm/year; p = 0.354), or neither target (median difference, 0.012 mm/year; p = 0.322). Conclusion. Placing the acetabular component within or outside the ‘safe zone’ did not alter the wear rate of HXLPE at long-term follow-up to a level that risked osteolysis. HXLPE appears to be a forgiving bearing material in terms of articular surface wear, but care must still be taken to position the acetabular component correctly so that the implant is stable. Cite this article: Bone Joint J 2018;100-B:891-7


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1579 - 1584
1 Dec 2018
Turgeon TR Gascoyne TC Laende EK Dunbar MJ Bohm ER Richardson CG

Aims. The introduction of a novel design of total knee arthroplasty (TKA) must achieve outcomes at least as good as existing designs. A novel design of TKA with a reducing radius of the femoral component and a modified cam-post articulation has been released and requires assessment of the fixation to bone. Radiostereometric analysis (RSA) of the components within the first two postoperative years has been shown to be predictive of medium- to long-term fixation. The aim of this study was to assess the stability of the tibial component of this system during this period of time using RSA. Patients and Methods. A cohort of 30 patients underwent primary, cemented TKA using the novel posterior stabilized fixed-bearing (ATTUNE) design. There was an even distribution of men and women (15:15). The mean age of the patients was 64 years (sd 8) at the time of surgery; their mean body mass index (BMI) was 35.4 kg/m2 (sd 7.9). RSA was used to assess the stability of the tibial component at 6, 12, and 24 months compared with a six-week baseline examination. Patient-reported outcome measures were also assessed. Results. The mean maximum total point motion (MTPM) of the tibial component between 12 and 24 months postoperatively was 0.08 mm (sd 0.08), which is well below the published threshold of 0.2 mm (p < 0.001). Patient-reported outcome measures consistently improved. Conclusion. The tibial component of this novel design of TKA showed stability between assessment 12 and 24 months postoperatively, suggesting an acceptably low risk of medium- to long-term failure due to aseptic loosening


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 610 - 614
1 May 2019
Aibinder WR Bartels DW Sperling JW Sanchez-Sotelo J

Aims. Shoulder arthroplasty using short humeral components is becoming increasingly popular. Some such components have been associated with relatively high rates of adverse radiological findings. The aim of this retrospective review was to evaluate the radiological humeral bone changes and mechanical failure rates with implantation of a short cementless humeral component in anatomical (TSA) and reverse shoulder arthroplasty (RSA). Patients and Methods. A total of 100 shoulder arthroplasties (35 TSA and 65 RSA) were evaluated at a mean of 3.8 years (3 to 8.3). The mean age at the time of surgery was 68 years (31 to 90). The mean body mass index was 32.7 kg/m. 2. (17.3 to 66.4). Results. Greater tuberosity stress shielding was noted in 14 shoulders (two TSA and 12 RSA) and was graded as mild in nine, moderate in two, and severe in three. Medial calcar resorption was noted in 23 shoulders (seven TSA and 16 RSA), and was graded as mild in 21 and moderate in two. No humeral components were revised for loosening or considered to be loose radiologically. Nine shoulders underwent reoperation for infection (n = 3), fracture of the humeral tray (n = 2), aseptic glenoid loosening (n = 1), and instability (n = 3). No periprosthetic fractures occurred. Conclusion. Implantation of this particular short cementless humeral component at the time of TSA or RSA was associated with a low rate of adverse radiological findings on the humeral side at mid-term follow-up. Our data do not raise any concerns regarding the use of a short stem in TSA or RSA. Cite this article: Bone Joint J 2019;101-B:610–614


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1290 - 1297
1 Oct 2017
Devane PA Horne JG Foley G Stanley J

Aims. This paper describes the methodology, validation and reliability of a new computer-assisted method which uses models of the patient’s bones and the components to measure their migration and polyethylene wear from radiographs after total hip arthroplasty (THA). Materials and Methods. Models of the patient’s acetabular and femoral component obtained from the manufacturer and models of the patient’s pelvis and femur built from a single computed tomography (CT) scan, are used by a computer program to measure the migration of the components and the penetration of the femoral head from anteroposterior and lateral radiographs taken at follow-up visits. The program simulates the radiographic setup and matches the position and orientation of the models to outlines of the pelvis, the acetabular and femoral component, and femur on radiographs. Changes in position and orientation reflect the migration of the components and the penetration of the femoral head. Validation was performed using radiographs of phantoms simulating known migration and penetration, and the clinical feasibility of measuring migration was assessed in two patients. Results. Migration of the acetabular and femoral components can be measured with limits of agreement (LOA) of 0.37 mm and 0.33 mm, respectively. Penetration of the femoral head can be measured with LOA of 0.161 mm. Conclusion. The migration of components and polyethylene wear can be measured without needing specialised radiographs. Accurate measurement may allow earlier prediction of failure after THA. Cite this article: Bone Joint J 2017;99-B:1290–7


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 36 - 42
1 Jun 2020
Nishitani K Kuriyama S Nakamura S Umatani N Ito H Matsuda S

Aims. This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes. Methods. A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle. Results. According to the mean and SD of γ angle (γ, 4.0 SD 3.0°), four groups (Extended or minor flexed group, −0.5° ≤ γ < 2.5° (n = 54)), Mild flexed group (2.5° ≤ γ < 5.5° (n = 63)), Moderate flexed group (5.5° ≤ γ < 8.5° (n = 26)), and Excessive flexed group (8.5° ≤ γ (n = 13)) were defined. The Excessive flexed group showed worse 2011KSSs in all subdomains (Symptoms, Satisfaction, Expectations, and Functional activities) than the Mild flexed group. Secondary regression showed a convex upward function, and the scores were highest at γ = 3.0°, 4.0°, and 3.0° in Satisfaction, Expectations, and Functional activities, respectively. Conclusion. The groups with a sagittal alignment of the femoral component > 8.5° showed inferior clinical outcomes in 2011KSSs. Secondary regression analyses showed that mild flexion of the femoral component was associated with the highest score. When implanting the Bi-Surface Knee prosthesis surgeons should pay careful attention to avoiding flexing the femoral component extensively during TKA. Our findings may be applicable to other implant designs. Cite this article: Bone Joint J 2020;102-B(6 Supple A):36–42


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Bone & Joint Research
Vol. 7, Issue 3 | Pages 226 - 231
1 Mar 2018
Campi S Mellon SJ Ridley D Foulke B Dodd CAF Pandit HG Murray DW

Objectives. The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Materials and Methods. Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone. Results. The push-in force progressively increased with increasing interference. The pull-out force was related in a non-linear fashion to interference, decreasing with higher interference. Compared with the current nominal interference, a lower interference would reduce the push-in forces by up to 45% (p < 0.001 One way ANOVA) ensuring comparable (or improved) pull-out forces (p > 0.05 Bonferroni post hoc test). With the more porous bone analogue, although the forces were lower, the relationship between interference and push-in and pull-out force were similar. Conclusions. This study suggests that decreasing the interference fit of the tibial component of the cementless OUKR reduces the push-in force and can increase the pull-out force. An optimal interference fit may both improve primary fixation and decrease the risk of fracture. Cite this article: S. Campi, S. J. Mellon, D. Ridley, B. Foulke, C. A. F. Dodd, H. G. Pandit, D. W. Murray. Optimal interference of the tibial component of the cementless Oxford Unicompartmental Knee Replacement. Bone Joint Res 2018;7:226–231. DOI: 10.1302/2046-3758.73.BJR-2017-0193.R1


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1596 - 1602
1 Dec 2017
Dunbar MJ Laende EK Collopy D Richardson CG

Aims. Hydroxyapatite coatings for uncemented fixation in total knee arthroplasty can theoretically provide a long-lasting biological interface with the host bone. The objective of this study was to test this hypothesis with propriety hydroxyapatite, peri-apatite, coated tibial components using component migration measured with radiostereometric analysis over two years as an indicator of long-term fixation. Patients and Methods. A total of 29 patients at two centres received uncemented PA-coated tibial components and were followed for two years with radiostereometric analysis exams to quantify the migration of the component. Results. While there was significant variation in individual migration patterns, the overall migration of the tibial component in the study group demonstrated a pattern of initial migration followed by stabilisation after one year, with mean maximum total point motion (MTPM) of 0.02 mm (standard deviation (. sd. ) 0.20) between one and two years post-operatively. The direction of greatest motion was subsidence, which stabilised at three months post-operatively (mean translation of 0.21 mm, . sd. 0.40). Conclusion. The tibial component migration pattern of stabilisation in the second post-operative year is indicative of successful long-term fixation for this PA-coated tibial component. Cite this article: Bone Joint J 2017;99-B:1596–1602


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1042 - 1049
1 Sep 2019
Murphy MP Killen CJ Ralles SJ Brown NM Hopkinson WJ Wu K

Aims. Several radiological methods of measuring anteversion of the acetabular component after total hip arthroplasty (THA) have been described. These are limited by low reproducibility, are less accurate than CT 3D reconstruction, and are cumbersome to use. These methods also partly rely on the identification of obscured radiological borders of the component. We propose two novel methods, the Area and Orthogonal methods, which have been designed to maximize use of readily identifiable points while maintaining the same trigonometric principles. Patients and Methods. A retrospective study of plain radiographs was conducted on 160 hips of 141 patients who had undergone primary THA. We compared the reliability and accuracy of the Area and Orthogonal methods with two of the current leading methods: those of Widmer and Lewinnek, respectively. Results. The 160 anteroposterior pelvis films revealed that the proposed Area method was statistically different from those described by Widmer and Lewinnek (p < 0.001 and p = 0.004, respectively). They gave the highest inter- and intraobserver reliability (0.992 and 0.998, respectively), and took less time (27.50 seconds (. sd. 3.19); p < 0.001) to complete. In addition, 21 available CT 3D reconstructions revealed the Area method achieved the highest Pearson’s correlation coefficient (r = 0.956; p < 0.001) and least statistical difference (p = 0.704) from CT with a mean within 1° of CT-3D reconstruction between ranges of 1° to 30° of measured radiological anteversion. Conclusion. Our results support the proposed Area method to be the most reliable, accurate, and speedy. They did not support any statistical superiority of the proposed Orthogonal method to that of the Widmer or Lewinnek method. Cite this article: Bone Joint J 2019;101-B:1042–1049


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 666 - 673
1 May 2017
Werthel J Lonjon G Jo S Cofield R Sperling JW Elhassan BT

Aims. In the initial development of total shoulder arthroplasty (TSA), the humeral component was usually fixed with cement. Cementless components were subsequently introduced. The aim of this study was to compare the long-term outcome of cemented and cementless humeral components in arthroplasty of the shoulder. Patients and Methods. All patients who underwent primary arthroplasty of the shoulder at our institution between 1970 and 2012 were included in the study. There were 4636 patients with 1167 cemented humeral components and 3469 cementless components. Patients with the two types of fixation were matched for nine different covariates using a propensity score analysis. A total of 551 well-balanced pairs of patients with cemented and cementless components were available after matching for comparison of the outcomes. The clinical outcomes which were analysed included loosening of the humeral component determined at revision surgery, periprosthetic fractures, post-operative infection and operating time. Results. The overall five-, ten-, 15- and 20-year rates of survival were 98.9%, 97.2%, 95.5%, and 94.4%, respectively. Survival without loosening at 20 years was 98% for cemented components and 92.4% for cementless components. After propensity score matching including fixation as determined by the design of the component, humeral loosening was also found to be significantly higher in the cementless group. Survival without humeral loosening at 20 years was 98.7% for cemented components and 91.0% for cementless components. There was no significant difference in the risk of intra- or post-operative fracture. The rate of survival without deep infection and the mean operating time were significantly higher in the cemented group. Conclusion. Both types of fixation give rates of long-term survival of > 90%. Cemented components have better rates of survival without loosening but this should be weighed against increased operating time and the risk of bony destruction of the proximal humerus at the time of revision of a cemented humeral component. Cite this article: Bone Joint J 2017;99-B:666–73


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 37 - 43
1 Jan 2016
Beverland DE O’Neill CKJ Rutherford M Molloy D Hill JC

Ideal placement of the acetabular component remains elusive both in terms of defining and achieving a target. Our aim is to help restore original anatomy by using the transverse acetabular ligament (TAL) to control the height, depth and version of the component. In the normal hip the TAL and labrum extend beyond the equator of the femoral head and therefore, if the definitive acetabular component is positioned such that it is cradled by and just deep to the plane of the TAL and labrum and is no more than 4mm larger than the original femoral head, the centre of the hip should be restored. If the face of the component is positioned parallel to the TAL and psoas groove the patient specific version should be restored. We still use the TAL for controlling version in the dysplastic hip because we believe that the TAL and labrum compensate for any underlying bony abnormality. . The TAL should not be used as an aid to inclination. Worldwide, > 75% of surgeons operate with the patient in the lateral decubitus position and we have shown that errors in post-operative radiographic inclination (RI) of > 50° are generally caused by errors in patient positioning. Consequently, great care needs to be taken when positioning the patient. We also recommend 35° of apparent operative inclination (AOI) during surgery, as opposed to the traditional 45°. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):37–43


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 811 - 821
1 Jul 2020
You D Sepehri A Kooner S Krzyzaniak H Johal H Duffy P Schneider P Powell J

Aims. Dislocation is the most common indication for further surgery following total hip arthroplasty (THA) when undertaken in patients with a femoral neck fracture. This study aimed to assess the complication rates of THA with dual mobility components (THA-DMC) following a femoral neck fracture and to compare outcomes between THA-DMC, conventional THA, and hemiarthroplasty (HA). Methods. We performed a systematic review of all English language articles on THA-DMC published between 2010 and 2019 in the MEDLINE, EMBASE, and Cochrane databases. After the application of rigorous inclusion and exclusion criteria, 23 studies dealing with patients who underwent treatment for a femoral neck fracture using THA-DMC were analyzed for the rate of dislocation. Secondary outcomes included reoperation, periprosthetic fracture, infection, mortality, and functional outcome. The review included 7,189 patients with a mean age of 77.8 years (66.4 to 87.6) and a mean follow-up of 30.9 months (9.0 to 68.0). Results. THA-DMC was associated with a significantly lower dislocation rate compared with both THA (OR 0.26; 95% CI 0.08 to 0.79) and HA (odds ratio (OR) 0.27; 95% confidence interval (CI) 0.15 to 0.50). The rate of large articulations and of intraprosthetic dislocation was 1.5% (n = 105) and 0.04% (n = 3) respectively. Conclusion. THA-DMC when used in patients with a femoral neck fracture is associated with a lower dislocation rate compared with conventional arthroplasty options. There was no increase in the rates of other complication when THA-DMC was used. Future cost analysis and prospective, comparative studies are required to assess the potential benefit of using THA-DMC in these patients. Cite this article: Bone Joint J 2020;102-B(7):811–821


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 880 - 886
1 Jul 2017
Mohaddes M Shareghi B Kärrholm J

Aims. The aim of this study was to compare the incidence of aseptic loosening after the use of a cemented acetabular component and a Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw, Indiana) at acetabular revision with bone impaction grafting. Patients and Methods. A total of 42 patients were included in the study. Patients were randomised to receive an all- polyethylene cemented acetabular component (n = 19) or a TM component (n = 23). Radiostereometric analysis and conventional radiographic examinations were performed regularly up to two years post-operatively or until further revision. Results. The proximal migration was significantly higher in the cemented group. At two years, the median proximal migration was 1.45 mm and 0.25 mm in the cemented and TM groups, respectively (p = 0.02). One cemented component was revised due to dislocation. There were no revisions in the TM group. Conclusion. Lower proximal migration in the TM group suggests that this design might be associated with a lower risk of aseptic loosening in the long term compared with an all polyethylene cemented component. Longer follow-up is required to confirm the clinical advantages of using this component at acetabular revision. Cite this article: Bone Joint J 2017;99-B:880–6


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 58 - 64
1 Jan 2016
Ahmed I Salmon LJ Waller A Watanabe H Roe JP Pinczewski LA

Aims. Oxidised zirconium was introduced as a material for femoral components in total knee arthroplasty (TKA) as an attempt to reduce polyethylene wear. However, the long-term survival of this component is not known. . Methods. We performed a retrospective review of a prospectively collected database to assess the ten year survival and clinical and radiological outcomes of an oxidised zirconium total knee arthroplasty with the Genesis II prosthesis. . The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and a patient satisfaction scale were used to assess outcome. Results. A total of 303 consecutive TKAs were performed in 278 patients with a mean age of 68 years (45 to 89). The rate of survival ten years post-operatively as assessed using Kaplan–Meier analysis was 97% (95% confidence interval 94 to 99) with revision for any reason as the endpoint. There were no revisions for loosening, osteolysis or failure of the implant. There was a significant improvement in all components of the WOMAC score at final follow-up (p < 0.001). The mean individual components of the KOOS score for symptoms (82.4 points; 36 to 100), pain (87.5 points; 6 to 100), activities of daily life (84.9 points; 15 to 100) and quality of life (71.4 points; 6 to 100) were all at higher end of the scale. . Discussion. This study provides further supportive evidence that the oxidised zirconium TKA gives comparable rates of survival with other implants and excellent functional outcomes ten years post-operatively. Take home message: Total knee arthroplasty with an oxidised zirconium femoral component gives comparable long-term rates of survival and functional outcomes with conventional implants. . Cite this article: Bone Joint J 2016;98-B:58–64


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 529 - 535
1 May 2019
Jacobs CA Kusema ET Keeney BJ Moschetti WE

Aims. The hypothesis of this study was that thigh circumference, distinct from body mass index (BMI), may be associated with the positioning of components when undertaking total hip arthroplasty (THA) using the direct anterior approach (DAA), and that an increased circumference might increase the technical difficulty. Patients and Methods. We performed a retrospective review of prospectively collected data involving 155 consecutive THAs among 148 patients undertaken using the DAA at an academic medical centre by a single fellowship-trained surgeon. Preoperatively, thigh circumference was measured at 10 cm, 20 cm, and 30 cm distal to the anterior superior iliac spine, in quartiles. Two blinded reviewers assessed the inclination and anteversion of the acetabular component, radiological leg-length discrepancy, and femoral offset. The radiological outcomes were considered as continuous and binary outcome variables based on Lewinnek’s ‘safe zone’. Results. Similar trends were seen in all three thigh circumference groups. In multivariable analyses, patients in the largest 20 cm thigh circumference quartile (59 cm to 78 cm) had inclination angles that were a mean of 5.96° larger (95% confidence interval (CI) 2.99° to 8.93°; p < 0.001) and anteversion angles that were a mean of 2.92° larger (95% CI 0.47° to 5.37°; p = 0.020) than the smallest quartile. No significant differences were noted in leg-length discrepancy or offset. Conclusion. There was an associated increase in inclination and anteversion as thigh circumference increased, with no change in the risk of malpositioning the components. THA can be performed using the DAA in patients with large thigh circumference without the risk of malpositioning the acetabular component. Cite this article: Bone Joint J 2019;101-B:529–535


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1003 - 1009
1 Aug 2020
Mononen H Sund R Halme J Kröger H Sirola J

Aims. There is evidence that prior lumbar fusion increases the risk of dislocation and revision after total hip arthroplasty (THA). The relationship between prior lumbar fusion and the effect of femoral head diameter on THA dislocation has not been investigated. We examined the relationship between prior lumbar fusion or discectomy and the risk of dislocation or revision after THA. We also examined the effect of femoral head component diameter on the risk of dislocation or revision. Methods. Data used in this study were compiled from several Finnish national health registers, including the Finnish Arthroplasty Register (FAR) which was the primary source for prosthesis-related data. Other registers used in this study included the Finnish Health Care Register (HILMO), the Social Insurance Institutions (SII) registers, and Statistics Finland. The study was conducted as a prospective retrospective cohort study. Cox proportional hazards regression and Kaplan-Meier survival analysis were used for analysis. Results. Prior lumbar fusion surgery was associated with increased risk of prosthetic dislocation (hazard ratio (HR) = 2.393, p < 0.001) and revision (HR = 1.528, p < 0.001). Head components larger than 28 mm were associated with lower dislocation rates compared to the 28 mm head (32 mm: HR = 0.712, p < 0.001; 36 mm: HR = 0.700, p < 0.001; 38 mm: HR = 0.808, p < 0.140; and 40 mm: HR = 0.421, p < 0.001). Heads of 38 mm (HR = 1.288, p < 0.001) and 40 mm (HR = 1.367, p < 0.001) had increased risk of revision compared to the 28 mm head. Conclusion. Lumbar fusion surgery was associated with higher rate of hip prosthesis dislocation and higher risk of revision surgery. Femoral head component of 32 mm (or larger) associates with lower risk of dislocation in patients with previous lumbar fusion. Cite this article: Bone Joint J 2020;102-B(8):1003–1009


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 64 - 67
1 Jan 2016
Lachiewicz PF Watters TS

The ‘jumbo’ acetabular component is now commonly used in acetabular revision surgery where there is extensive bone loss. It offers high surface contact, permits weight bearing over a large area of the pelvis, the need for bone grafting is reduced and it is usually possible to restore centre of rotation of the hip. Disadvantages of its use include a technique in which bone structure may not be restored, a risk of excessive posterior bone loss during reaming, an obligation to employ screw fixation, limited bone ingrowth with late failure and high hip centre, leading to increased risk of dislocation. Contraindications include unaddressed pelvic dissociation, inability to implant the component with a rim fit, and an inability to achieve screw fixation. Use in acetabulae with < 50% bone stock has also been questioned. Published results have been encouraging in the first decade, with late failures predominantly because of polyethylene wear and aseptic loosening. Dislocation is the most common complication of jumbo acetabular revisions, with an incidence of approximately 10%, and often mandates revision. Based on published results, a hemispherical component with an enhanced porous coating, highly cross-linked polyethylene, and a large femoral head appears to represent the optimum tribology for jumbo acetabular revisions. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):64–7


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1280 - 1288
1 Oct 2018
Grammatopoulos G Gofton W Cochran M Dobransky J Carli A Abdelbary H Gill HS Beaulé PE

Aims. This study aims to: determine the difference in pelvic position that occurs between surgery and radiographic, supine, postoperative assessment; examine how the difference in pelvic position influences subsequent component orientation; and establish whether differences in pelvic position, and thereafter component orientation, exist between total hip arthroplasties (THAs) performed in the supine versus the lateral decubitus positions. Patients and Methods. The intra- and postoperative anteroposterior pelvic radiographs of 321 THAs were included; 167 were performed with the patient supine using the anterior approach and 154 were performed with the patient in the lateral decubitus using the posterior approach. The inclination and anteversion of the acetabular component was measured and the difference (Δ) between the intra- and postoperative radiographs was determined. The target zone was inclination/anteversion of 40°/20° (± 10°). Changes in the tilt, rotation, and obliquity of the pelvis on the intra- and postoperative radiographs were calculated from Δinclination/anteversion using the Levenberg–Marquardt algorithm. Results. The mean postoperative inclination/anteversion was 40° (± 8°)/23° (± 9°) with Δinclination and/or Δanteversion > ± 10° in 74 (21%). Intraoperatively, the pelvis was anteriorly tilted by a mean of 4° (± 10°), internally rotated by a mean of 1° (± 10°) and adducted by a mean of 1° (± 5°). Having Δinclination and/or Δanteversion > ± 10° was associated with a 3.5 odds ratio of having the acetabular component outside the target zone. A greater proportion of THAs that were undertaken with the patient in the lateral decubitus position had Δinclination and/or Δanteversion > ± 10° (35.3%, 54/153) compared with those in the supine position (4.8%, 8/167; p < 0.001). A greater number of acetabular components were within the target zone in THAs undertaken with the patient in the supine position (72%, 120/167), compared with those in the lateral decubitus position (44%, 67/153; p < 0.001). Intraoperatively, the pelvis was more anteriorly tilted (p < 0.001) and more internally rotated (p = 0.04) when the patient was in the lateral decubitus position. Conclusion. The pelvic position is more reliable when the patient is in the supine position, leading to more consistent orientation of the acetabular component. Significant differences in pelvic tilt and rotation are seen with the patient in the lateral decubitus position. Cite this article: Bone Joint J 2018;100-B:1280–8


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 104 - 107
1 Jul 2019
Greenwell PH Shield WP Chapman DM Dalury DF

Aims. The aim of this study was to establish the results of isolated exchange of the tibial polyethylene insert in revision total knee arthroplasty (RTKA) in patients with well-fixed femoral or tibial components. We report on a series of RTKAs where only the polyethylene was replaced, and the patients were followed for a mean of 13.2 years (10.0 to 19.1). Patients and Methods. Our study group consisted of 64 non-infected, grossly stable TKA patients revised over an eight-year period (1998 to 2006). The mean age of the patients at time of revision was 72.2 years (48 to 88). There were 36 females (56%) and 28 males (44%) in the cohort. All patients had received the same cemented, cruciate-retaining patella resurfaced primary TKA. All subsequently underwent an isolated polyethylene insert exchange. The mean time from the primary TKA to RTKA was 9.1 years (2.2 to 16.1). Results. At final follow-up, 13 patients had died, leaving 51 patients for study. Only seven of these patients had required re-operation. Knee Society scores (KSS) prior to RTKA were a mean of 78.4 (24 to 100). By six weeks post-revision, the mean total KSS was 93.5 (38 to 100) and at final follow-up, they had a mean of 91.6 (36 to 100). Conclusion. In appropriate circumstances, where the femoral and tibial components are satisfactorily aligned and well fixed, and where the soft tissues can be balanced, a polyethylene exchange alone can provide a durable solution for these RTKA patients. Cite this article: Bone Joint J 2019;101-B(7 Supple C):104–107


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 601 - 606
1 May 2017
Narkbunnam R Amanatullah DF Electricwala AJ Huddleston III JI Maloney WJ Goodman SB

Aims. The stability of cementless acetabular components is an important factor for surgical planning in the treatment of patients with pelvic osteolysis after total hip arthroplasty (THA). However, the methods for determining the stability of the acetabular component from pre-operative radiographs remain controversial. Our aim was to develop a scoring system to help in the assessment of the stability of the acetabular component under these circumstances. Patients and Methods. The new scoring system is based on the mechanism of failure of these components and the location of the osteolytic lesion, according to the DeLee and Charnley classification. Each zone is evaluated and scored separately. The sum of the individual scores from the three zones is reported as a total score with a maximum of 10 points. The study involved 96 revision procedures which were undertaken for wear or osteolysis in 91 patients between July 2002 and December 2012. Pre-operative anteroposterior pelvic radiographs and Judet views were reviewed. The stability of the acetabular component was confirmed intra-operatively. Results. Intra-operatively, it was found that 64 components were well-fixed and 32 were loose. Mean total scores in the well-fixed and loose components were 2.9 (0 to 7) and 7.2 (1 to 10), respectively (p < 0.001). In hips with a low score (0 to 2), the component was only loose in one of 33 hips (3%). The incidence of loosening increased with increasing scores: in those with scores of 3 and 4, two of 19 components (10.5%) were loose; in hips with scores of 5 and 6, eight of 19 components (44.5%) were loose; in hips with scores of 7 or 8, 13 of 17 components (70.6%) were loose; and for hips with scores of 9 and 10, nine of nine components (100%) were loose. Receiver-operating-characteristic curve analysis demonstrated very good accuracy (area under the curve = 0.90, p < 0.001). The optimal cutoff point was a score of ≥ 5 with a sensitivity of 0.79, and a specificity of 0.87. Conclusion. There was a strong correlation between the scoring system and the probability of loosening of a cementless acetabular component. This scoring system provides a clinically useful tool for pre-operative planning, and the evaluation of the outcome of revision surgery for patients with loosening of a cementless acetabular component in the presence of osteolysis. Cite this article: Bone Joint J 2017;99-B:601–6


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 189 - 197
1 Feb 2019
Yoshitani J Kabata T Kajino Y Ueno T Ueoka K Nakamura T Tsuchiya H

Aims. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability. Patients and Methods. A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis. Results. The acetabular shapes of Crowe IV hips were distinctively triangular; the ideal position of the centre of the acetabular component was superior on the posterior bony wall. The first and second relative warps explained 34.2% and 18.4% of the variance, respectively, compared with that of 28.6% and 18.0% in normal hips. We defined the landmark as one-third the distance from top on the posterior bony wall in Crowe IV hips. The average distance from the centre of the acetabular component was 5.6 mm. Conclusion. Crowe IV hips are distinctively triangular; the point one-third from the top on the posterior bony wall was a useful landmark for placing the acetabular component


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1067 - 1074
1 Dec 2021
El-Bakoury A Khedr W Williams M Eid Y Hammad AS

Aims

After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients.

Methods

A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 75 - 80
1 Jan 2016
Merolla G Chin P Sasyniuk TM Paladini P Porcellini G

Aims. We evaluated clinical and radiographic outcomes of total shoulder arthroplasty (TSA) using the second-generation Trabecular Metal (TM) Glenoid component. The first generation component was withdrawn in 2005 after a series of failures were reported. Between 2009 and 2012, 40 consecutive patients with unilateral TSA using the second-generation component were enrolled in this clinical study. The mean age of the patients was 63.8 years (40 to 75) and the mean follow-up was 38 months (24 to 42). Methods. Patients were evaluated using the Constant score (CS), the American Shoulder and Elbow Surgeons (ASES) score and routine radiographs. Results. Significant differences were found between the pre- and post-operative CS (p = 0.003), ASES (p = 0.009) scores and CS subscores of pain (p < 0.001), strength (p < 0.001) and mobility items (p < 0.05). No glenoid or humeral components migrated. Posterior thinning of the keel and slight wear at the polyethylene-TM interface was observed in one patient but was asymptomatic. Radiolucent lines were found around three humeral (< 1.5 mm) and two glenoid components (< 1 mm) and all were asymptomatic. Discussion. TSA with the second-generation TM Glenoid component results in satisfactory to excellent clinical performance, function, and subjective satisfaction at a mean follow-up of about three years. Radiographic changes were few and did not affect the outcome. Take home message: This paper highlights that the second generation Trabecular Metal Glenoid has better outcomes than those reported with the first-generation component.  . Cite this article: Bone Joint J 2016;98-B:75–80


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims. The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). Patients and Methods. A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (. sd. 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared. Results. The system reported accurate values for reconstruction of the hip when compared to those measured postoperatively using CT. The mean deviation from the executed overall hip length and offset were 1.6 mm (. sd. 2.9) and 0.5 mm (. sd. 3.0), respectively. Mean combined anteversion was similar and correlated between intraoperative measurements and postoperative CT measurements (32.5°, . sd. 5.9° versus 32.2°, . sd. 6.4°; respectively; R. 2. = 0.65; p < 0.001). There was a significant correlation between mean intraoperative (40.4°, . sd. 2.1°) acetabular component inclination and mean measured postoperative inclination (40.12°, . sd. 3.0°, R. 2. = 0.62; p < 0.001). There was a significant correlation between mean intraoperative version (23.2°, . sd. 2.3°), and postoperatively measured version (23.0°, . sd. 2.4°; R. 2. = 0.76; p < 0.001). Preoperative and postoperative femoral component anteversion were significantly correlated with one another (R. 2. = 0.64; p < 0.001). Three patients had CT scan measurements that differed substantially from the intraoperative robotic measurements when evaluating stem anteversion. Conclusion. This is the first study to evaluate the success of hip reconstruction overall using robotic-assisted THA. The overall hip reconstruction obtained in the operating theatre using robotic assistance accurately correlated with the postoperative component position assessed independently using CT based 3D modelling. Clinical correlation during surgery should continue to be practiced and compared with observed intraoperative robotic values. Cite this article: Bone Joint J 2018;100-B:1303–9


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives. Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. Methods. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues. Results. The pull-off force of the head increased as the stiffness of the impactor tip increased but without increasing the force transmitted through the springs (patient). Increasing the impaction energy increased the pull-off force but also increased the force transmitted through the springs. Conclusions. To limit wear and corrosion, manufacturers should maximize the stiffness of the impactor tool but without damaging the surface of the head. This strategy will maximize the stability of the head on the stem for a given applied energy, without influencing the force transmitted through the patient’s tissues. Current impactor designs already appear to approach this limit. Increasing the applied energy (which is dependent on the mass of the hammer and square of the contact speed) increases the stability of the modular connection but proportionally increases the force transmitted through the patient’s tissues, as well as to the surface of the head, and should be restricted to safe levels. Cite this article: A. Krull, M. M. Morlock, N. E. Bishop. Maximizing the fixation strength of modular components by impaction without tissue damage. Bone Joint Res 2018;7:196–204. DOI: 10.1302/2046-3758.72.BJR-2017-0078.R2


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1449 - 1456
1 Sep 2021
Kazarian GS Lieberman EG Hansen EJ Nunley RM Barrack RL

Aims

The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA).

Methods

A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.