Advertisement for orthosearch.org.uk
Results 1 - 50 of 702
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1234 - 1240
1 Sep 2012
Willcox NMJ Clarke JV Smith BRK Deakin AH Deep K

We compared lower limb coronal alignment measurements obtained pre- and post-operatively with long-leg radiographs and computer navigation in patients undergoing primary total knee replacement (TKR). A series of 185 patients had their pre- and post-implant radiological and computer-navigation system measurements of coronal alignment compared using the Bland-Altman method. The study included 81 men and 104 women with a mean age of 68.5 years (32 to 87) and a mean body mass index of 31.7 kg/m2 (19 to 49). Pre-implant Bland–Altman limits of agreement were -9.4° to 8.6° with a repeatability coefficient of 9.0°. The Bland–Altman plot showed a tendency for the radiological measurement to indicate a higher level of pre-operative deformity than the corresponding navigation measurement. Post-implant limits of agreement were -5.0° to 5.4° with a repeatability coefficient of 5.2°. The tendency for valgus knees to have greater deformity on the radiograph was still seen, but was weaker for varus knees.

The alignment seen or measured intra-operatively during TKR is not necessarily the same as the deformity seen on a standing long-leg radiograph either pre- or post-operatively. Further investigation into the effect of weight-bearing and surgical exposure of the joint on the mechanical femorotibial angle is required to enable the most appropriate intra-operative alignment to be selected.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 201 - 204
1 Feb 2005
Schaeren S Bischoff-Ferrari HA Knupp M Dick W Huber JF Theiler R

We validated the North American Spine Society (NASS) outcome-assessment instrument for the lumbar spine in a computerised touch-screen format and assessed patients’ acceptance, taking into account previous computer experience, age and gender. Fifty consecutive patients with symptomatic and radiologically-proven degenerative disease of the lumbar spine completed both the hard copy (paper) and the computerised versions of the NASS questionnaire. Statistical analysis showed high agreement between the paper and the touch-screen computer format for both subscales (intraclass correlation coefficient 0.94, 95% confidence interval (0.90 to 0.97)) independent of computer experience, age and gender. In total, 55% of patients stated that the computer format was easier to use and 66% preferred it to the paper version (p < 0.0001 among subjects expressing a preference). Our data indicate that the touch-screen format is comparable to the paper form. It may improve follow-up in clinical practice and research by meeting patients’ preferences and minimising administrative work


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims

The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?

Patients and Methods

A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS).


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 557 - 560
1 Apr 2007
Davis ET Gallie P Macgroarty K Waddell JP Schemitsch E

A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1417 - 1424
1 Oct 2013
Jeys L Matharu GS Nandra RS Grimer RJ

We hypothesised that the use of computer navigation-assisted surgery for pelvic and sacral tumours would reduce the risk of an intralesional margin. We reviewed 31 patients (18 men and 13 women) with a mean age of 52.9 years (13.5 to 77.2) in whom computer navigation-assisted surgery had been carried out for a bone tumour of the pelvis or sacrum. There were 23 primary malignant bone tumours, four metastatic tumours and four locally advanced primary tumours of the rectum. The registration error when using computer navigation was <  1 mm in each case. There were no complications related to the navigation, which allowed the preservation of sacral nerve roots (n = 13), resection of otherwise inoperable disease (n = 4) and the avoidance of hindquarter amputation (n = 3). The intralesional resection rate for primary tumours of the pelvis and sacrum was 8.7% (n = 2): clear bone resection margins were achieved in all cases. At a mean follow-up of 13.1 months (3 to 34) three patients (13%) had developed a local recurrence. The mean time alive from diagnosis was 16.8 months (4 to 48). . Computer navigation-assisted surgery is safe and has reduced our intralesional resection rate for primary tumours of the pelvis and sacrum. We recommend this technique as being worthy of further consideration for this group of patients. Cite this article: Bone Joint J 2013;95-B:1417–24


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 693 - 702
1 Jun 2018
Jayakumar P Overbeek CL Vranceanu A Williams M Lamb S Ring D Gwilym S

Aims. Outcome measures quantifying aspects of health in a precise, efficient, and user-friendly manner are in demand. Computer adaptive tests (CATs) may overcome the limitations of established fixed scales and be more adept at measuring outcomes in trauma. The primary objective of this review was to gain a comprehensive understanding of the psychometric properties of CATs compared with fixed-length scales in the assessment of outcome in patients who have suffered trauma of the upper limb. Study designs, outcome measures and methodological quality are defined, along with trends in investigation. Materials and Methods. A search of multiple electronic databases was undertaken on 1 January 2017 with terms related to “CATs”, “orthopaedics”, “trauma”, and “anatomical regions”. Studies involving adults suffering trauma to the upper limb, and undergoing any intervention, were eligible. Those involving the measurement of outcome with any CATs were included. Identification, screening, and eligibility were undertaken, followed by the extraction of data and quality assessment using the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) criteria. The review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria and reg. istered (PROSPERO: CRD42016053886). Results. A total of 31 studies reported trauma conditions alone, or in combination with non-traumatic conditions using CATs. Most were cross-sectional with varying level of evidence, number of patients, type of study, range of conditions and methodological quality. CATs correlated well with fixed scales and had minimal or no floor-ceiling effects. They required significantly fewer questions and/or less time for completion. Patient-Reported Outcomes Measurement Information System (PROMIS) CATs were the most frequently used, and the use of CATs is increasing. Conclusion. Early studies show valid and reliable outcome measurement with CATs performing as well as, if not better than, established fixed scales. Superior properties such as floor-ceiling effects and ease of use support their use in the assessment of outcome after trauma. As CATs are being increasingly used in patient outcomes research, further psychometric evaluation, especially involving longitudinal studies and groups of patients with specific injuries are required to inform clinical practice using these contemporary measures. Cite this article: Bone Joint J 2018;100-B:693–702


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 752 - 760
1 Jun 2007
Yamada Y Toritsuka Y Horibe S Sugamoto K Yoshikawa H Shino K

We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the in vivo three-dimensional movement of the patella. Flexion, tilt and spin of the patella were described in terms of rotation angles from 0°. The location of the patella and the tibial tubercle were evaluated using parameters expressed as percentage patellar shift and percentage tubercle shift. Patellar inclination to the femur was also measured and patellofemoral contact was qualitatively and quantitatively analysed. The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 746 - 751
1 Jun 2007
Yamada Y Toritsuka Y Yoshikawa H Sugamoto K Horibe S Shino K

We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° . sd. 6.7° for patients and 11.9° . sd. 3.6° for the control group (p < 0.001). The mean height of the articular cartilage was 91.3° . sd. 8.3° for the patients and 83.3° . sd. 7.7° for the control group (p = 0.03), suggesting a wider convex trochlea in the patients with recurrent dislocation of the patella caused by the proximally-extended convex area. The lateral border of the articular cartilage of the trochlea in the patients was more laterally located than in the control group. Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 283 - 288
1 Feb 2017
Hughes A Heidari N Mitchell S Livingstone J Jackson M Atkins R Monsell F

Aims. Computer hexapod assisted orthopaedic surgery (CHAOS), is a method to achieve the intra-operative correction of long bone deformities using a hexapod external fixator before definitive internal fixation with minimally invasive stabilisation techniques. The aims of this study were to determine the reliability of this method in a consecutive case series of patients undergoing femoral deformity correction, with a minimum six-month follow-up, to assess the complications and to define the ideal group of patients for whom this treatment is appropriate. Patients and Methods. The medical records and radiographs of all patients who underwent CHAOS for femoral deformity at our institution between 2005 and 2011 were retrospectively reviewed. Records were available for all 55 consecutive procedures undertaken in 49 patients with a mean age of 35.6 years (10.9 to 75.3) at the time of surgery. Results. Patients were assessed at a mean interval of 44 months (6 to 90) following surgery. The indications were broad; the most common were vitamin D resistant rickets (n = 10), growth plate arrest (n = 6) and post-traumatic deformity (n = 20). Multi-planar correction was required in 33 cases. A single level osteotomy was performed in 43 cases. Locking plates were used to stabilise the osteotomy in 33 cases and intramedullary nails in the remainder. Complications included two nonunions, one death, one below-knee deep vein thrombosis, one deep infection and one revision procedure due to initial under-correction. There were no neurovascular injuries or incidence of compartment syndrome. Conclusion. This is the largest reported series of femoral deformity corrections using the CHAOS technique. This series demonstrates that precise intra-operative realignment is possible with a hexapod external fixator prior to definitive stabilisation with contemporary internal fixation. This combination allows reproducible correction of complex femoral deformity from a wide variety of diagnoses and age range with a low complication rate. Cite this article: Bone Joint J 2017;99-B:283–8


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement. We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 261 - 266
1 Feb 2017
Laitinen MK Parry MC Albergo JI Grimer RJ Jeys LM

Aims. Due to the complex anatomy of the pelvis, limb-sparing resections of pelvic tumours achieving adequate surgical margins, can often be difficult. The advent of computer navigation has improved the precision of resection of these lesions, though there is little evidence comparing resection with or without the assistance of navigation. Our aim was to evaluate the efficacy of navigation-assisted surgery for the resection of pelvic bone tumours involving the posterior ilium and sacrum. . Patients and Methods. Using our prospectively updated institutional database, we conducted a retrospective case control study of 21 patients who underwent resection of the posterior ilium and sacrum, for the treatment of a primary sarcoma of bone, between 1987 and 2015. The resection was performed with the assistance of navigation in nine patients and without navigation in 12. We assessed the accuracy of navigation-assisted surgery, as defined by the surgical margin and how this affects the rate of local recurrence, the disease-free survival and the effects on peri-and post-operative morbidity. . Results. The mean age of the patients was 36.4 years (15 to 66). The mean size of the tumour was 10.9 cm. In the navigation-assisted group, the margin was wide in two patients (16.7%), marginal in six (66.7%) and wide-contaminated in one (11.1%) with no intralesional margin. In the non-navigated-assisted group; the margin was wide in two patients (16.7%), marginal in five (41.7%), intralesional in three (25.0%) and wide-contaminated in two (16.7%). Local recurrence occurred in two patients in the navigation-assisted group (22.2%) and six in the non-navigation-assisted group (50.0%). The disease-free survival was significantly better when operated with navigation-assistance (p = 0.048). The blood loss and operating time were less in the navigated-assisted group, as was the risk of a foot drop post-operatively. Conclusion . The introduction of navigation-assisted surgery for the resection of tumours of the posterior ilium and sacrum has increased the safety for the patients and allows for a better oncological outcome. . Cite this article: Bone Joint J 2017;99-B:261–6


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 943 - 947
1 Jul 2007
Wong KC Kumta SM Chiu KH Antonio GE Unwin P Leung KS

The use of a navigation system in musculoskeletal tumour surgery enables the integration of pre-operative CT and MRI images to generate a precise three-dimensional anatomical model of the site and the extent of the tumour. We carried out six consecutive resections of musculoskeletal tumour in five patients using an existing commercial computer navigation system. There were three women and two men with a mean age of 41 years (24 to 47). Reconstruction was performed using a tumour prosthesis in three lesions and a vascularised fibular graft in one. No reconstruction was needed in two cases. The mean follow-up was 6.9 months (3.5 to 10). The mean duration of surgery was 28 minutes (13 to 50). Examination of the resected specimens showed clear margins in all the tumour lesions and a resection that was exactly as planned


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 399 - 403
1 May 1989
Howell F Dickson R

We present a method of visualising spinal deformities in three dimensions using conventional radiographs and computer graphics. The shape of the spinal column can be determined from the anteroposterior and lateral radiographs and displayed in any projection. In patients with adolescent idiopathic scoliosis, the fundamental lesion, an abnormal lordosis, can be demonstrated without the need for additional views. The method is applicable to other spinal deformities and may help to elucidate their three-dimensional shape


Bone & Joint Research
Vol. 9, Issue 6 | Pages 282 - 284
1 Jun 2020
Clement ND Calliess T Christen B Deehan DJ


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 972 - 975
1 Jul 2006
Spencer JMF Day RE Sloan KE Beaver RJ

Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component.

A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points.

The difference between the surgeons was found to be highly significant (p < 0.001). The variation was significantly larger for anteversion (sd 9.6°) than for inclination (sd 6.3°). The present method for registering pelvic landmarks shows significant inaccuracy, which highlights the need for improved methods of registration before this technique is considered to be safe.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 477 - 480
1 Apr 2007
Spencer JM Chauhan SK Sloan K Taylor A Beaver RJ

We previously compared the component alignment in total knee replacement using a computer-navigated technique with a conventional jig-based method. We randomly allocated 71 patients to undergo either computer-navigated or conventional replacement. An improved alignment was seen in the computer-navigated group.

The patients were then followed up post-operatively for two years, using the Knee Society score, the Short Form-36 health survey, the Western Ontario and McMaster Universities osteoarthritis index, the Bartlett Patellar pain questionnaire and the Oxford knee score, to assess functional outcome.

At two years post-operatively 60 patients were available for assessment, 30 in each group and 62 patients completed a postal survey. No patient in either group had undergone revision. All variables were analysed for differences between the groups either by Student’s t-test or the Mann-Whitney U test. Differences between the two groups did not reach significance for any of the outcome measures at any time point. At two years postoperatively, the frequency of mild to severe anterior pain was not significantly different (p = 0.818), varying between 44% (14) for the computer-navigated group, and 47% (14) for the conventionally-replaced group. The Bartlett Patellar score and the Oxford knee score were also not significantly different (t-test p = 0.161 and p = 0.607, respectively).

The clinical outcome of the patients with a computer-navigated knee replacement appears to be no different to that of a more conventional jig-based technique at two years post-operatively, despite the better alignment achieved with computer-navigated surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 310 - 315
1 Mar 2009
Olsen M Davis ET Waddell JP Schemitsch EH

We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip.

The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° (sd 2.6). The stem-shaft angle after operation differed from that planned by a mean of 2.8° (sd 2.0) and in 86% of cases the final angle measured within ± 5° of that planned. We had no instances of notching of the neck or varus alignment of the implant in our series. A learning curve was observed in the time taken for navigation, but not for accurate placement of the implant.

Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1281 - 1286
1 Oct 2009
Olsen M Davis ET Chiu M Gamble P Tumia N Boyle RA Schemitsch EH

The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle.

Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 455 - 460
1 Apr 2007
Sugano N Nishii T Miki H Yoshikawa H Sato Y Tamura S

We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group.

We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 1 - 1
1 Jan 2004
Thomas N Hamblen D


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1130 - 1130
1 Aug 2007
COBB JP


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 186 - 186
1 Jan 1998
Laurence M


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Bone & Joint Open
Vol. 3, Issue 10 | Pages 841 - 849
27 Oct 2022
Knight R Keene DJ Dutton SJ Handley R Willett K

Aims. The rationale for exacting restoration of skeletal anatomy after unstable ankle fracture is to improve outcomes by reducing complications from malunion; however, current definitions of malunion lack confirmatory clinical evidence. Methods. Radiological (absolute radiological measurements aided by computer software) and clinical (clinical interpretation of radiographs) definitions of malunion were compared within the Ankle Injury Management (AIM) trial cohort, including people aged ≥ 60 years with an unstable ankle fracture. Linear regressions were used to explore the relationship between radiological malunion (RM) at six months and changes in function at three years. Function was assessed with the Olerud-Molander Ankle Score (OMAS), with a minimal clinically important difference set as six points, as per the AIM trial. Piecewise linear models were used to investigate new radiological thresholds which better explain symptom impact on ankle function. Results. Previously described measures of RM and surgeon opinion of clinically significant malunion (CSM) were shown to be related but with important differences. CSM was more strongly related to outcome (-13.9 points on the OMAS; 95% confidence interval (CI) -21.9 to -5.4) than RM (-5.5 points; 95% CI -9.8 to -1.2). Existing malunion thresholds for talar tilt and tibiofibular clear space were shown to be slightly conservative; new thresholds which better explain function were identified (talar tilt > 2.4°; tibiofibular clear space > 6 mm). Based on this new definition the presence of RM had an impact on function, which was statistically significant, but the clinical significance was uncertain (-9.1 points; 95% CI -13.8 to -4.4). In subsequent analysis, RM of a posterior malleolar fracture was shown to have a statistically significant impact on OMAS change scores, but the clinical significance was uncertain (-11.6 points; 95% CI -21.9 to -0.6). Conclusion. These results provide clinical evidence which supports the previously accepted definitions. Further research to investigate more conservative clinical thresholds for malunion is indicated. Cite this article: Bone Jt Open 2022;3(10):841–849


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 479 - 485
1 Apr 2022
Baker M Albelo F Zhang T Schneider MB Foster MJ Aneizi A Hasan SA Gilotra MN Henn RF

Aims. The purpose of this study was to assess the prevalence of depression and anxiety symptoms in patients undergoing shoulder surgery using the National Institutes of Health (NIH) Patient-Reported Outcomes Measurement Information System (PROMIS) Depression and Anxiety computer adaptive tests, and to determine the factors associated with more severe symptoms. Additionally, we sought to determine whether PROMIS Depression and Anxiety were associated with functional outcomes after shoulder surgery. Methods. This was a retrospective analysis of 293 patients from an urban population who underwent elective shoulder surgery from 2015 to 2018. Survey questionnaires included preoperative and two-year postoperative data. Bivariate analysis was used to identify associations and multivariable analysis was used to control for confounding variables. Results. Mean two-year PROMIS Depression and Anxiety scores significantly improved from preoperative scores, with a greater improvement observed in PROMIS Anxiety. Worse PROMIS Depression and Anxiety scores were also significantly correlated with worse PROMIS Physical Function (PF) and American Shoulder and Elbow Surgeons scores (ASES). After controlling for confounding variables, worse PROMIS Depression was an independent predictor of worse PROMIS PF, while worse PROMIS Anxiety was an independent predictor of worse PROMIS PF and ASES scores. Conclusion. Mean two-year PROMIS Depression and Anxiety scores improved after elective shoulder surgery and several patient characteristics were associated with these scores. Worse functional outcomes were associated with worse PROMIS Depression and Anxiety; however, more severe two-year PROMIS Anxiety was the strongest predictor of worse functional outcomes. Cite this article: Bone Joint J 2022;104-B(4):479–485


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 8 - 11
1 Jan 2022
Wright-Chisem J Elbuluk AM Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article: Bone Joint J 2022;104-B(1):8–11


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1089 - 1095
21 Dec 2021
Luo W Ali MS Limb R Cornforth C Perry DC

Aims. The Patient-Reported Outcomes Measurement Information System (PROMIS) has demonstrated faster administration, lower burden of data capture and reduced floor and ceiling effects compared to traditional Patient Reported Outcomes Measurements (PROMs). We investigated the suitability of PROMIS Mobility score in assessing physical function in the sequelae of childhood hip disease. Methods. In all, 266 adolscents (aged ≥ 12 years) and adults were identified with a prior diagnosis of childhood hip disease (either Perthes’ disease (n = 232 (87.2%)) or Slipped Capital Femoral Epiphysis (n = 34 (12.8%)) with a mean age of 27.73 years (SD 12.24). Participants completed the PROMIS Mobility Computer Adaptive Test, the Non-Arthritic Hip Score (NAHS), EuroQol five-dimension five-level questionnaire, and the Numeric Pain Rating Scale. We investigated the correlation between the PROMIS Mobility and other tools to assess use in this population and any clustering of outcome scores. Results. There was a strong correlation between the PROMIS Mobility and other established PROMs; NAHS (rs = 0.79; p < 0.001). There was notable clustering in PROMIS at the upper end of the distribution score (42.5%), with less seen in the NAHS (20.3%). However, the clustering was broadly similar between PROMIS Mobility and the comparable domains of the NAHS; function (53.6%), and activity (35.0%). Conclusion. PROMIS Mobility strongly correlated with other tools demonstrating convergent construct validity. There was clustering of physical function scores at the upper end of the distributions, which may reflect truncation of the data caused by participants having excellent outcomes. There were elements of disease not captured within PROMIS Mobility alone, and difficulties in differentiating those with the highest levels of function. Cite this article: Bone Jt Open 2021;2(12):1089–1095


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


Bone & Joint Open
Vol. 2, Issue 7 | Pages 493 - 502
12 Jul 2021
George SZ Yan X Luo S Olson SA Reinke EK Bolognesi MP Horn ME

Aims. Patient-reported outcome measures have become an important part of routine care. The aim of this study was to determine if Patient-Reported Outcomes Measurement Information System (PROMIS) measures can be used to create patient subgroups for individuals seeking orthopaedic care. Methods. This was a cross-sectional study of patients from Duke University Department of Orthopaedic Surgery clinics (14 ambulatory and four hospital-based). There were two separate cohorts recruited by convenience sampling (i.e. patients were included in the analysis only if they completed PROMIS measures during a new patient visit). Cohort #1 (n = 12,141; December 2017 to December 2018,) included PROMIS short forms for eight domains (Physical Function, Pain Interference, Pain Intensity, Depression, Anxiety, Sleep Quality, Participation in Social Roles, and Fatigue) and Cohort #2 (n = 4,638; January 2019 to August 2019) included PROMIS Computer Adaptive Testing instruments for four domains (Physical Function, Pain Interference, Depression, and Sleep Quality). Cluster analysis (K-means method) empirically derived subgroups and subgroup differences in clinical and sociodemographic factors were identified with one-way analysis of variance. Results. Cluster analysis yielded four subgroups with similar clinical characteristics in Cohort #1 and #2. The subgroups were: 1) Normal Function: within normal limits in Physical Function, Pain Interference, Depression, and Sleep Quality; 2) Mild Impairment: mild deficits in Physical Function, Pain Interference, and Sleep Quality but with Depression within normal limits; 3) Impaired Function, Not Distressed: moderate deficits in Physical Function and Pain Interference, but within normal limits for Depression and Sleep Quality; and 4) Impaired Function, Distressed: moderate (Physical Function, Pain Interference, and Sleep Quality) and mild (Depression) deficits. Conclusion. These findings suggest orthopaedic patient subgroups differing in physical function, pain, and psychosocial distress can be created from as few as four different PROMIS measures. Longitudinal research is necessary to determine whether these subgroups have prognostic validity. Cite this article: Bone Jt Open 2021;2(7):493–502


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 258 - 264
1 Feb 2015
Young PS Bell SW Mahendra A

We report our experience of using a computer navigation system to aid resection of malignant musculoskeletal tumours of the pelvis and limbs and, where appropriate, their subsequent reconstruction. We also highlight circumstances in which navigation should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male, three female, mean age of 30 years (13 to 75) using commercially available computer navigation software (Orthomap 3D) and assessed its impact on the accuracy of our surgery. Of nine pelvic tumours, three had a biological reconstruction with extracorporeal irradiation, four underwent endoprosthetic replacement (EPR) and two required no bony reconstruction. There were eight tumours of the bones of the limbs. Four diaphyseal tumours underwent biological reconstruction. Two patients with a sarcoma of the proximal femur and two with a sarcoma of the proximal humerus underwent extra-articular resection and, where appropriate, EPR. One soft-tissue sarcoma of the adductor compartment which involved the femur was resected and reconstructed using an EPR. Computer navigation was used to aid reconstruction in eight patients. Histological examination of the resected specimens revealed tumour-free margins in all patients. Post-operative radiographs and CT showed that the resection and reconstruction had been carried out as planned in all patients where navigation was used. In two patients, computer navigation had to be abandoned and the operation was completed under CT and radiological control. The use of computer navigation in musculoskeletal oncology allows accurate identification of the local anatomy and can define the extent of the tumour and proposed resection margins. Furthermore, it helps in reconstruction of limb length, rotation and overall alignment after resection of an appendicular tumour. . Cite this article: Bone Joint J 2015;97-B:258–64


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article: Bone Joint J 2020;102-B(3):276–279


Bone & Joint Open
Vol. 1, Issue 9 | Pages 530 - 540
4 Sep 2020
Arafa M Nesar S Abu-Jabeh H Jayme MOR Kalairajah Y

Aims. The coronavirus disease (COVID)-19 pandemic forced an unprecedented period of challenge to the NHS in the UK where hip fractures in the elderly population are a major public health concern. There are approximately 76,000 hip fractures in the UK each year which make up a substantial proportion of the trauma workload of an average orthopaedic unit. This study aims to assess the impact of the COVID-19 pandemic on hip fracture care service and the emerging lessons to withstand any future outbreaks. Methods. Data were collected retrospectively on 157 hip fractures admitted from March to May 2019 and 2020. The 2020 group was further subdivided into COVID-positive and COVID-negative. Data including the four-hour target, timing to imaging, hours to operation, anaesthetic and operative details, intraoperative complications, postoperative reviews, COVID status, Key Performance Indicators (KPIs), length of stay, postoperative complications, and the 30-day mortality were compiled from computer records and our local National Hip Fracture Database (NHFD) export data. Results. Hip fractures and inpatient falls significantly increased by 61.7% and 7.2% respectively in the 2020 group. A significant difference was found among the three groups regarding anaesthetic preparation time, anaesthetic time, and recovery time. The mortality rate in the 2020 COVID-positive group (36.8%) was significantly higher than both the 2020 COVID-negative and 2019 groups (11.5% and 11.7% respectively). The hospital stay was significantly higher in the COVID-positive group (mean of 24.21 days (SD 19.29)). Conclusion. COVID-19 has had notable effects on the hip fracture care service: hip fracture rates increased significantly. There were inefficiencies in theatre processes for which we have recommended the use of alternate theatres. COVID-19 infection increased the 30-day mortality and hospital stay in hip fractures. More research needs to be done to reduce this risk. Cite this article: Bone Joint Open 2020;1-9:530–540


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims

The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice.

Methods

A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 67 - 73
1 Jun 2021
Lee G Wakelin E Randall A Plaskos C

Aims. Neither a surgeon’s intraoperative impression nor the parameters of computer navigation have been shown to be predictive of the outcomes following total knee arthroplasty (TKA). The aim of this study was to determine whether a surgeon, with robotic assistance, can predict the outcome as assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) for pain (KPS), one year postoperatively, and establish what factors correlate with poor KOOS scores in a well-aligned and balanced TKA. Methods. A total of 134 consecutive patients who underwent TKA using a dynamic ligament tensioning robotic system with a tibia first resection technique and a cruciate sacrificing ultracongruent TKA system were enrolled into a prospective study. Each TKA was graded based on the final mediolateral ligament balance at 10° and 90° of flexion: 1) < 1 mm difference in the thickness of the tibial insert and that which was planned (n = 75); 2) < 1 mm difference (n = 26); 3) between 1 mm to 2 mm difference (n = 26); and 4) > 2 mm difference (n = 7). The mean one-year KPS score for each grade of TKA was compared and the likelihood of achieving an KPS score of > 90 was calculated. Finally, the factors associated with lower KPS despite achieving a high-grade TKA (grade A and B) were analyzed. Results. Patients with a grade of A or B TKA had significantly higher mean one-year KPS scores compared with those with C or D grades (p = 0.031). There was no difference in KPS scores in grade A or B TKAs, but 33% of these patients did not have a KPS score of > 90. While there was no correlation with age, sex, preoperative deformity, and preoperative KOOS and Patient-Reported Outcomes Measurement Information System (PROMIS) physical scores, patients with a KPS score of < 90, despite a grade A or B TKA, had lower PROMIS mental health scores compared with those with KPS scores of > 90 (54.1 vs 50.8; p = 0.043). Patients with grade A and B TKAs with KPS > 90 were significantly more likely to respond with “my expectations were too low”, and with “the knee is performing better than expected” compared with patients with these grades of TKA who had a KPS score of < 90 (40% vs 22%; p = 0.004). Conclusion. A TKA balanced with robotic assistance to within 1 mm of difference between the medial and lateral sides in both flexion and extension had a higher KPS score one year postoperatively. Despite accurate ligament balance information, a robotic system could not guarantee excellent pain relief. Patient expectations and mental status also significantly affected the perceived success of TKA. Cite this article: Bone Joint J 2021;103-B(6 Supple A):67–73


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


Bone & Joint 360
Vol. 13, Issue 2 | Pages 20 - 23
1 Apr 2024

The April 2024 Knee Roundup360 looks at: Challenging the status quo: re-evaluating the impact of obesity on unicompartmental knee arthroplasty outcomes; Timing matters: the link between ACL reconstruction delays and cartilage damage; Custom fit or off the shelf: evaluating patient outcomes in tailored versus standard knee replacements; Revolutionizing knee replacement: a comparative study on robotic-assisted and computer-navigated techniques; Pre-existing knee osteoarthritis and severe joint depression are associated with the need for total knee arthroplasty after tibial plateau fracture in patients aged over 60 years; Modern digital therapies?; A matched study on fracture rates following knee replacement surgeries;


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 115 - 120
1 Mar 2024
Ricotti RG Flevas DA Sokrab R Vigdorchik JM Mayman DJ Jerabek SA Sculco TP Sculco PK

Aims

Periprosthetic femoral fracture (PPF) is a major complication following total hip arthroplasty (THA). Uncemented femoral components are widely preferred in primary THA, but are associated with higher PPF risk than cemented components. Collared components have reduced PPF rates following uncemented primary THA compared to collarless components, while maintaining similar prosthetic designs. The purpose of this study was to analyze PPF rate between collarless and collared component designs in a consecutive cohort of posterior approach THAs performed by two high-volume surgeons.

Methods

This retrospective series included 1,888 uncemented primary THAs using the posterior approach performed by two surgeons (PKS, JMV) from January 2016 to December 2022. Both surgeons switched from collarless to collared components in mid-2020, which was the only change in surgical practice. Data related to component design, PPF rate, and requirement for revision surgery were collected. A total of 1,123 patients (59.5%) received a collarless femoral component and 765 (40.5%) received a collared component. PPFs were identified using medical records and radiological imaging. Fracture rates between collared and collarless components were analyzed. Power analysis confirmed 80% power of the sample to detect a significant difference in PPF rates, and a Fisher’s exact test was performed to determine an association between collared and collarless component use on PPF rates.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


Bone & Joint Open
Vol. 2, Issue 2 | Pages 119 - 124
1 Feb 2021
Shah RF Gwilym SE Lamb S Williams M Ring D Jayakumar P

Aims. The increase in prescription opioid misuse and dependence is now a public health crisis in the UK. It is recognized as a whole-person problem that involves both the medical and the psychosocial needs of patients. Analyzing aspects of pathophysiology, emotional health, and social wellbeing associated with persistent opioid use after injury may inform safe and effective alleviation of pain while minimizing risk of misuse or dependence. Our objectives were to investigate patient factors associated with opioid use two to four weeks and six to nine months after an upper limb fracture. Methods. A total of 734 patients recovering from an isolated upper limb fracture were recruited in this study. Opioid prescription was documented retrospectively for the period preceding the injury, and prospectively at the two- to four-week post-injury visit and six- to nine-month post-injury visit. Bivariate and multivariate analysis sought factors associated with opioid prescription from demographics, injury-specific data, Patient Reported Outcome Measurement Instrumentation System (PROMIS), Depression computer adaptive test (CAT), PROMIS Anxiety CAT, PROMIS Instrumental Support CAT, the Pain Catastrophizing Scale (PCS), the Pain Self-efficacy Questionnaire (PSEQ-2), Tampa Scale for Kinesiophobia (TSK-11), and measures that investigate levels of social support. Results. A new prescription of opioids two to four weeks after injury was independently associated with less social support (odds ratio (OR) 0.26, p < 0.001), less instrumental support (OR 0.91, p < 0.001), and greater symptoms of anxiety (OR 1.1, p < 0.001). A new prescription of opioids six to nine months after injury was independently associated with less instrumental support (OR 0.9, p < 0.001) and greater symptoms of anxiety (OR 1.1, p < 0.001). Conclusion. This study demonstrates that potentially modifiable psychosocial factors are associated with increased acute and chronic opioid prescriptions following upper limb fracture. Surgeons prescribing opioids for upper limb fractures should be made aware of the screening and management of emotional and social health. Cite this article: Bone Jt Open 2021;2(2):119–124


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 69 - 77
25 Jan 2024
Achten J Appelbe D Spoors L Peckham N Kandiyali R Mason J Ferguson D Wright J Wilson N Preston J Moscrop A Costa M Perry DC

Aims

The management of fractures of the medial epicondyle is one of the greatest controversies in paediatric fracture care, with uncertainty concerning the need for surgery. The British Society of Children’s Orthopaedic Surgery prioritized this as their most important research question in paediatric trauma. This is the protocol for a randomized controlled, multicentre, prospective superiority trial of operative fixation versus nonoperative treatment for displaced medial epicondyle fractures: the Surgery or Cast of the EpicoNdyle in Children’s Elbows (SCIENCE) trial.

Methods

Children aged seven to 15 years old inclusive, who have sustained a displaced fracture of the medial epicondyle, are eligible to take part. Baseline function using the Patient-Reported Outcomes Measurement Information System (PROMIS) upper limb score, pain measured using the Wong Baker FACES pain scale, and quality of life (QoL) assessed with the EuroQol five-dimension questionnaire for younger patients (EQ-5D-Y) will be collected. Each patient will be randomly allocated (1:1, stratified using a minimization algorithm by centre and initial elbow dislocation status (i.e. dislocated or not-dislocated at presentation to the emergency department)) to either a regimen of the operative fixation or non-surgical treatment.