Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the
Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods. Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results. Radiographs and histology demonstrated impaired
Objectives. Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on
Aims. A growing number of fractures progress to delayed or nonunion, causing significant morbidity and socioeconomic impact. Localized delivery of stem cells and subcutaneous parathyroid hormone (PTH) has been shown individually to accelerate bony regeneration. This study aimed to combine the therapies with the aim of upregulating
Objectives. Diabetes mellitus (DM) is known to impair
Objectives. The osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) balance is of the utmost importance in
Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of
Objectives. As one of the heat-stable enterotoxins, Staphylococcal enterotoxin C2 (SEC2) is synthesized by Staphylococcus aureus, which has been proved to inhibit the growth of tumour cells, and is used as an antitumour agent in cancer immunotherapy. Although SEC2 has been reported to promote osteogenic differentiation of human mesenchymal stem cells (MSCs), the in vivo function of SCE2 in animal model remains elusive. The aim of this study was to further elucidate the in vivo effect of SCE2 on
Aims. Little is known about the effect of haemorrhagic shock and resuscitation
on
Objectives. MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair.
This prospective multicentre study was undertaken
to determine whether the timing of the post-operative administration
of bisphosphonate affects
Fracture repair occurs by two broad mechanisms:
direct healing, and indirect healing with callus formation. The effects
of bisphosphonates on fracture repair have been assessed only in
models of indirect
Aims. Bone turnover markers (BTMs) follow distinct trends after fractures and limited evidence suggests differential levels in BTMs in patients with delayed healing. The effect of vitamin D, and other factors that influence BTMs and
Aims. Alcoholism is a well-known detrimental factor in
Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate
Objectives.
Aims. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in
Aims. Though most humeral shaft
Highly active anti-retroviral therapy has transformed HIV into a chronic disease with a long-term asymptomatic phase. As a result, emphasis is shifting to other effects of the virus, aside from immunosuppression and mortality. We have reviewed the current evidence for an association between HIV infection and poor
Aims. The “2 to 10% strain rule” for
Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on
Objectives. We investigated the effects on
Aims. Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. Methods. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. Results. In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. Conclusion. Insufficient high-quality evidence is available to determine the efficacy of stem cells for
Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary micromotion. The hypothesis was that axial micromotion enhances
Aims. There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results. Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced
Aims. The modified Radiological Union Scale for Tibia (mRUST) fractures score was developed in order to assess progress to union and define a numerical assessment of
Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of
Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation. Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response. The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate
We studied the effect of vitamin C on
Platelet-derived growth factor (PDGF) is known
to stimulate osteoblast or osteoprogenitor cell activity. We investigated
the effect of locally applied PDGF from poly-. d. ,l-lactide
(PDLLA)-coated implants on
A balanced inflammatory response is important for successful
We measured the adenosine triphosphate (ATP) content of callus at various intervals during healing in 78 fractured tibiae in 10- to 12-week-old rabbits. The results, compared with the level in normal tissues, showed a high rate of energy metabolism in the early phase of
We studied 56 patients with fractures of the tibial shaft in a multicentre prospective randomised trial of three methods of external fixation. Group I was treated with a fixator which was unlocked at 4 to 6 weeks to allow free axial compression (axial dynamisation) with weight-bearing. Group II was treated with a fixator that was similarly unlocked at 4 to 6 weeks but included a small silicone spring which on weight-bearing could be compressed by up to 2 mm. this spring returns to its original length on cessation of weight-bearing thus allowing cycles of motion of up to 2 mm. Group III had a spring fixator like group II, but it was unlocked from the start to allow cyclical micromovement as soon as weight-bearing began.
Using a simple method of quantifying
Objectives. Small animal models of fracture repair primarily investigate
indirect
This paper reviews the current literature concerning the main clinical factors which can impair the healing of fractures and makes recommendations on avoiding or minimising these in order to optimise the outcome for patients. The clinical implications are described.
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of callus formation are increased. However, the
evidence has been unconvincing and an association between such an
injury and enhanced
A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL. A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.Aims
Methods
Objectives. Secondary
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting
With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Aims
Methods
We have investigated whether assessment of blood flow to the proximal scaphoid can be used to predict nonunion in acute fractures of the scaphoid. We studied 32 fractures of the scaphoid one to two weeks after injury, by dynamic fat-suppressed T1-weighted gradient-echo MRI after the intravenous administration of gadopentetate dimeglumine (0.1 mmol/kg body-weight). Steepest slope values (SSV) and percentage enhancement values (%E) were calculated for the distal and proximal fragments and poles. All the fractures were treated by immobilisation in a cast, and union was assessed by CT at 12 weeks. Nonunion occurred in four fractures (12%), and there was no statistically significant difference between the proximal fragment SSV and %E values for the fractures which united and those with nonunion. The difference between the proximal pole SSV and %E values for the union and nonunion groups reached statistical significance (p <
0.05), but with higher enhancement parameters for the nonunion group. Our results suggest that poor proximal vascularity is not an important determinant of union in fractures of the scaphoid.
The uptake of 99mTc-MDP was studied in 73 patients after a tibial fracture. The image obtained five minutes after injection during a period between one and four weeks after fracture was found to be related to the incidence of non-union after six months. A ratio of 1.3 between the uptake at the fracture site and at normal bone adjacent to it predicted non-union in an individual patient with a sensitivity of about 70% and a specificity of 90%.
In 65 mature Wistar rats a Kirschner wire was introduced into the medullary cavity of each femur. A closed transverse mid-shaft fracture of one femur was produced by a three-point bending technique. Subsequently the mechanical characteristics of the healing fracture, including the torque and angle of twist required to take the callus to its yield point and to ultimate failure, were compared with those for the opposite femur of each rat. Controls were killed in groups at two, three, four, five and seven weeks. Test animals were given bovine growth hormone in a daily dose of five milligrams before being killed in groups at two, three and four weeks. A significant increase in torque index was found in the two-week group of test animals but not in subsequent groups. No evidence was found that growth hormone given alone could produce an overall shortening of the healing time in fresh fractures.
Objectives. The monitoring of