Radiopaque solutions and suspensions introduced into cancellous bone in the extremities of the cadaver are rapidly removed into the venous system through regional superficial or deep veins. The experiments described in this communication confirm the simplicity of methods of introduction of fluids into cancellous bone and justify further observations on their clinical application for the technique of phiebography.
Aims. Social
Aims. The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction. Methods. The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control
Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Results. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned
Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined
Aims. The aim of this study was to produce clinical consensus recommendations about the non-surgical treatment of children with Perthes’ disease. The recommendations are intended to support clinical practice in a condition for which there is no robust evidence to guide optimal care. Methods. A two-round, modified Delphi study was conducted online. An advisory group of children’s orthopaedic specialists consisting of physiotherapists, surgeons, and clinical nurse specialists designed a survey. In the first round, participants also had the opportunity to suggest new statements. The survey included statements related to ‘Exercises’, ‘Physical activity’, ‘Education/information sharing’, ‘Input from other services’, and ‘Monitoring assessments’. The survey was shared with clinicians who regularly treat children with Perthes’ disease in the UK using clinically relevant specialist groups and social
Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast
Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic
Aims. LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. Methods. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic
Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic
chondrotoxicity in vitro. Methods. Chondrocytes were harvested from bovine femoral condyle cartilage
and isolated using collagenase-containing
Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the
Aims. The adequate provision of personal protective equipment (PPE) for healthcare workers has come under considerable scrutiny during the COVID-19 pandemic. This study aimed to evaluate staff awareness of PPE guidance, perceptions of PPE measures, and concerns regarding PPE use while caring for COVID-19 patients. In addition, responses of doctors, nurses, and other healthcare professionals (OHCPs) were compared. Methods. The inclusion criteria were all staff working in clinical areas of the hospital. Staff were invited to take part using a link to an online questionnaire advertised by email, posters displayed in clinical areas, and social
Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast
The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free
Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs.Aims
Methods
To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults. The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.Aims
Methods
Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential.Aims
Methods
Multipotential processed lipoaspirate (PLA) cells extracted from five human infrapatellar fat pads and embedded into fibrin glue nodules, were induced into the chondrogenic phenotype using chondrogenic
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders. We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation.Aims
Methods
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
The December 2022 Foot & Ankle Roundup360 looks at: Evans calcaneal osteotomy and multiplanar correction in flat foot deformity; Inflammatory biomarkers in tibialis posterior tendon dysfunction; Takedown of ankle fusions and conversion to total ankle arthroplasty; Surgical incision closure with three different materials; Absorbable sutures are not inferior to nonabsorbable sutures for tendo Achilles repair; Zadek’s osteotomy is a reliable technique for treating Haglund’s syndrome; How to best assess patient limitations after acute Achilles tendon injury; Advances in the management of infected nonunion of the foot and ankle.
To identify factors influencing clinicians’ decisions to undertake a nonoperative hip fracture management approach among older people, and to determine whether there is global heterogeneity regarding these factors between clinicians from high-income countries (HIC) and low- and middle-income countries (LMIC). A SurveyMonkey questionnaire was electronically distributed to clinicians around the world through the Fragility Fracture Network (FFN)’s Perioperative Special Interest Group and clinicians’ personal networks between 24 May and 25 July 2021. Analyses were performed using Excel and STATA v16.0. Between-group differences were determined using independent-samples Aims
Methods
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis.Aims
Methods
Ankle fracture is one of the most common musculoskeletal injuries sustained in the UK. Many patients experience pain and physical impairment, with the consequences of the fracture and its management lasting for several months or even years. The broad aim of ankle fracture treatment is to maintain the alignment of the joint while the fracture heals, and to reduce the risks of problems, such as stiffness. More severe injuries to the ankle are routinely treated surgically. However, even with advances in surgery, there remains a risk of complications; for patients experiencing these, the associated loss of function and quality of life (Qol) is considerable. Non-surgical treatment is an alternative to surgery and involves applying a cast carefully shaped to the patient’s ankle to correct and maintain alignment of the joint with the key benefit being a reduction in the frequency of common complications of surgery. The main potential risk of non-surgical treatment is a loss of alignment with a consequent reduction in ankle function. This study aims to determine whether ankle function, four months after treatment, in patients with unstable ankle fractures treated with close contact casting is not worse than in those treated with surgical intervention, which is the current standard of care. This trial is a pragmatic, multicentre, randomized non-inferiority clinical trial with an embedded pilot, and with 12 months clinical follow-up and parallel economic analysis. A surveillance study using routinely collected data will be performed annually to five years post-treatment. Adult patients, aged 60 years and younger, with unstable ankle fractures will be identified in daily trauma meetings and fracture clinics and approached for recruitment prior to their treatment. Treatments will be performed in trauma units across the UK by a wide range of surgeons. Details of the surgical treatment, including how the operation is done, implant choice, and the recovery programme afterwards, will be at the discretion of the treating surgeon. The non-surgical treatment will be close-contact casting performed under anaesthetic, a technique which has gained in popularity since the publication of the Ankle Injury Management (AIM) trial. In all, 890 participants (445 per group) will be randomly allocated to surgical or non-surgical treatment. Data regarding ankle function, QoL, complications, and healthcare-related costs will be collected at eight weeks, four and 12 months, and then annually for five years following treatment. The primary outcome measure is patient-reported ankle function at four months from treatment.Aims
Methods
The February 2024 Research Roundup360 looks at: If you use a surgical helmet, you should seal your gown-glove interface; The use of iodophor-impregnated drapes in patients with iodine-related allergies: a case series and review of the literature; Location of the ovaries in children and efficacy of gonadal shielding in hip and pelvis radiography; Prehospital tranexamic acid administration does not improve outcomes in severe trauma patients; Silver-coated distal femur megaprosthesis in chronic infections with severe bone loss: a multicentre case series.
A review of the literature on elbow replacement found no consistency in the clinical outcome measures which are used to assess the effectiveness of interventions. The aim of this study was to define core outcome domains for elbow replacement. A real-time Delphi survey was conducted over four weeks using outcomes from a scoping review of 362 studies on elbow replacement published between January 1990 and February 2021. A total of 583 outcome descriptors were rationalized to 139 unique outcomes. The survey consisted of 139 outcomes divided into 18 domains. The readability and clarity of the survey was determined by an advisory group including a patient representative. Participants were able to view aggregated responses from other participants in real time and to revisit their responses as many times as they wished during the study period. Participants were able to propose additional items for inclusion. A Patient and Public Inclusion and Engagement (PPIE) panel considered the consensus findings.Aims
Methods
Two discrete legal factors enable the surgeon to treat an injured patient the fully informed, autonomous consent of the adult patient with capacity via civil law; and the medical exception to the criminal law. This article discusses current concepts in consent in trauma; and also considers the perhaps less well known medical exception to the Offences against the Person Act 1861, which exempts surgeons from criminal liability as long as they provide ‘proper medical treatment’. Cite this article:
Complete ruptures of the ulnar collateral ligament (UCL) of the thumb are a common injury, yet little is known about their current management in the UK. The objective of this study was to assess the way complete UCL ruptures are managed in the UK. We carried out a multicentre, survey-based cross-sectional study in 37 UK centres over a 16-month period from June 2022 to September 2023. The survey results were analyzed descriptively.Aims
Methods
Perthes’ disease is an idiopathic avascular necrosis of the developing femoral head, often causing deformity that impairs physical function. Current treatments aim to optimize the joint reaction force across the hip by enhancing congruency between the acetabulum and femoral head. Despite a century of research, there is no consensus regarding the optimal treatment. The aim of this study was to describe the experiences of children, their families, and clinicians when considering the treatment of Perthes’ disease. A qualitative study gathered information from children and their families affected by Perthes’ disease, along with treating clinicians. Interviews followed a coding framework, with the interview schedule informed by behavioural theory and patient and public involvement. Transcripts were analyzed using the framework method.Aims
Methods
Shoulder arthroplasty is effective in the management of end-stage glenohumeral joint arthritis. However, it is major surgery and patients must balance multiple factors when considering the procedure. An understanding of patients’ decision-making processes may facilitate greater support of those considering shoulder arthroplasty and inform the outcomes of future research. Participants were recruited from waiting lists of three consultant upper limb surgeons across two NHS hospitals. Semi-structured interviews were conducted with 12 participants who were awaiting elective shoulder arthroplasty. Transcribed interviews were analyzed using a grounded theory approach. Systematic coding was performed; initial codes were categorized and further developed into summary narratives through a process of discussion and refinement. Data collection and analyses continued until thematic saturation was reached.Aims
Methods
With up to 40% of patients having patellofemoral joint osteoarthritis (PFJ OA), the two arthroplasty options are to replace solely the patellofemoral joint via patellofemoral arthroplasty (PFA), or the entire knee via total knee arthroplasty (TKA). The aim of this study was to assess postoperative success of second-generation PFAs compared to TKAs for patients treated for PFJ OA using patient-reported outcome measures (PROMs) and domains deemed important by patients following a patient and public involvement meeting. MEDLINE, EMBASE via OVID, CINAHL, and EBSCO were searched from inception to January 2022. Any study addressing surgical treatment of primary patellofemoral joint OA using second generation PFA and TKA in patients aged above 18 years with follow-up data of 30 days were included. Studies relating to OA secondary to trauma were excluded. ROB-2 and ROBINS-I bias tools were used.Aims
Methods
The aim of this audit was to assess and improve the completeness and accuracy of the National Joint Registry (NJR) dataset for arthroplasty of the elbow. It was performed in two phases. In Phase 1, the completeness was assessed by comparing the NJR elbow dataset with the NHS England Hospital Episode Statistics (HES) data between April 2012 and April 2020. In order to assess the accuracy of the data, the components of each arthroplasty recorded in the NJR were compared to the type of arthroplasty which was recorded. In Phase 2, a national collaborative audit was undertaken to evaluate the reasons for unmatched data, add missing arthroplasties, and evaluate the reasons for the recording of inaccurate arthroplasties and correct them.Aims
Methods
The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction. Cite this article:
Pellino1 (Peli1) has been reported to regulate various inflammatory diseases. This study aims to explore the role of Peli1 in the occurrence and development of osteoarthritis (OA), so as to find new targets for the treatment of OA. After inhibiting Peli1 expression in chondrocytes with small interfering RNA (siRNA), interleukin (IL)-1β was used to simulate inflammation, and OA-related indicators such as synthesis, decomposition, inflammation, and apoptosis were detected. Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signalling pathway were detected. After inhibiting the expression of Peli1 in macrophages Raw 264.7 with siRNA and intervening with lipopolysaccharide (LPS), the polarization index of macrophages was detected, and the supernatant of macrophage medium was extracted as conditioned medium to act on chondrocytes and detect the apoptosis index. The OA model of mice was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity to reduce the expression of Peli1. The degree of cartilage destruction and synovitis were evaluated by haematoxylin and eosin (H&E) staining, Safranin O/Fast Green staining, and immunohistochemistry.Aims
Methods
Most patients with advanced malignancy suffer bone metastases, which pose a significant challenge to orthopaedic services and burden to the health economy. This study aimed to assess adherence to the British Orthopaedic Oncology Society (BOOS)/British Orthopaedic Association (BOA) guidelines on patients with metastatic bone disease (MBD) in the UK. A prospective, multicentre, national collaborative audit was designed and delivered by a trainee-led collaborative group. Data were collected over three months (1 April 2021 to 30 June 2021) for all patients presenting with MBD. A data collection tool allowed investigators at each hospital to compare practice against guidelines. Data were collated and analyzed centrally to quantify compliance from 84 hospitals in the UK for a total of 1,137 patients who were eligible for inclusion.Aims
Methods
Gram-negative periprosthetic joint infection (PJI) has been poorly studied despite its rapidly increasing incidence. Treatment with one-stage revision using intra-articular (IA) infusion of antibiotics may offer a reasonable alternative with a distinct advantage of providing a means of delivering the drug in high concentrations. Carbapenems are regarded as the last line of defense against severe Gram-negative or polymicrobial infection. This study presents the results of one-stage revision using intra-articular carbapenem infusion for treating Gram-negative PJI, and analyzes the characteristics of bacteria distribution and drug sensitivity. We retrospectively reviewed 32 patients (22 hips and 11 knees) who underwent single-stage revision combined with IA carbapenem infusion between November 2013 and March 2020. The IA and intravenous (IV) carbapenem infusions were administered for a single Gram-negative infection, and IV vancomycin combined with IA carbapenems and vancomycin was applied for polymicrobial infection including Gram-negative bacteria. The bacterial community distribution, drug sensitivity, infection control rate, functional recovery, and complications were evaluated. Reinfection or death caused by PJI was regarded as a treatment failure.Aims
Methods
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article:
After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.Aims
Methods
This is a multicentre, prospective assessment of a proportion of the overall orthopaedic trauma caseload of the UK. It investigates theatre capacity, cancellations, and time to surgery in a group of hospitals that is representative of the wider population. It identifies barriers to effective practice and will inform system improvements. Data capture was by collaborative approach. Patients undergoing procedures from 22 August 2022 and operated on before 31 October 2022 were included. Arm one captured weekly caseload and theatre capacity. Arm two concerned patient and injury demographics, and time to surgery for specific injury groups.Aims
Methods
Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Methods. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different
Multiligament knee injuries (MLKI) are devastating injuries that can result in significant morbidity and time away from sport. There remains considerable variation in strategies employed for investigation, indications for operative intervention, outcome reporting, and rehabilitation following these injuries. At present no study has yet provided a comprehensive overview evaluating the extent, range, and overall summary of the published literature pertaining to MLKI. Our aim is to perform a methodologically rigorous scoping review, mapping the literature evaluating the diagnosis and management of MLKI. This scoping review will address three aims: firstly, to map the current extent and nature of evidence for diagnosis and management of MLKI; secondly, to summarize and disseminate existing research findings to practitioners; and thirdly, to highlight gaps in current literature. A three-step search strategy as described by accepted methodology will be employed to identify peer-reviewed literature including reviews, technical notes, opinion pieces, and original research. An initial limited search will be performed to determine suitable search terms, followed by an expanded search of four electronic databases (MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Web of Science). Two reviewers will independently screen identified studies for final inclusion.Aims
Methods