Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims. Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. Methods. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias. Results. A total of 40 studies reported on training and internal validation; four studies performed both development and external validation, and one study performed only external validation. The most commonly reported outcomes were mortality (33%, 15/45) and length of hospital stay (9%, 4/45), and the majority of prediction models were developed in the hip fracture population (60%, 27/45). The overall median completeness for the TRIPOD statement was 62% (interquartile range 30 to 81%). The overall risk of bias in the PROBAST tool was low in 24% (11/45), high in 69% (31/45), and unclear in 7% (3/45) of the studies. High risk of bias was mainly due to analysis domain concerns including small datasets with low number of outcomes, complete-case analysis in case of missing data, and no reporting of performance measures. Conclusion. The results of this study showed that despite a myriad of potential clinically useful applications, a substantial part of ML studies in orthopaedic trauma lack transparent reporting, and are at high risk of bias. These problems must be resolved by following established guidelines to instil confidence in ML models among patients and clinicians. Otherwise, there will remain a sizeable gap between the development of ML prediction models and their clinical application in our day-to-day orthopaedic trauma practice. Cite this article: Bone Jt Open 2024;5(1):9–19


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion. Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice. Cite this article: Bone Joint J 2024;106-B(11):1216–1222


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article: Bone Joint J 2022;104-B(12):1292–1303


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article: Bone Joint J 2020;102-B(4):407–413


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 21 - 28
1 Jan 2023
Ndlovu S Naqshband M Masunda S Ndlovu K Chettiar K Anugraha A

Aims

Clinical management of open fractures is challenging and frequently requires complex reconstruction procedures. The Gustilo-Anderson classification lacks uniform interpretation, has poor interobserver reliability, and fails to account for injuries to musculotendinous units and bone. The Ganga Hospital Open Injury Severity Score (GHOISS) was designed to address these concerns. The major aim of this review was to ascertain the evidence available on accuracy of the GHOISS in predicting successful limb salvage in patients with mangled limbs.

Methods

We searched electronic data bases including PubMed, CENTRAL, EMBASE, CINAHL, Scopus, and Web of Science to identify studies that employed the GHOISS risk tool in managing complex limb injuries published from April 2006, when the score was introduced, until April 2021. Primary outcome was the measured sensitivity and specificity of the GHOISS risk tool for predicting amputation at a specified threshold score. Secondary outcomes included length of stay, need for plastic surgery, deep infection rate, time to fracture union, and functional outcome measures. Diagnostic test accuracy meta-analysis was performed using a random effects bivariate binomial model.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 201 - 213
1 May 2024
Hamoodi Z Gehringer CK Bull LM Hughes T Kearsley-Fleet L Sergeant JC Watts AC

Aims

The aims of this study were to identify and evaluate the current literature examining the prognostic factors which are associated with failure of total elbow arthroplasty (TEA).

Methods

Electronic literature searches were conducted using MEDLINE, Embase, PubMed, and Cochrane. All studies reporting prognostic estimates for factors associated with the revision of a primary TEA were included. The risk of bias was assessed using the Quality In Prognosis Studies (QUIPS) tool, and the quality of evidence was assessed using the modified Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework. Due to low quality of the evidence and the heterogeneous nature of the studies, a narrative synthesis was used.


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1049 - 1066
1 Dec 2024
Lister J James S Sharma HK Hewitt C Fulbright H Leggett H McDaid C

Aims

Lower limb reconstruction (LLR) has a profound impact on patients, affecting multiple areas of their lives. Many patient-reported outcome measures (PROMs) are employed to assess these impacts; however, there are concerns that they do not adequately capture all outcomes important to patients, and may lack content validity in this context. This review explored whether PROMs used with adults requiring, undergoing, or after undergoing LLR exhibited content validity and adequately captured outcomes considered relevant and important to patients.

Methods

A total of 37 PROMs were identified. Systematic searches were performed to retrieve content validity studies in the adult LLR population, and hand-searches used to find PROM development studies. Content validity assessments for each measure were performed following Consensus-based Standards for the selection of health measurement Instruments (COSMIN) guidelines. A mapping exercise compared all PROMs to a conceptual framework previously developed by the study team (‘the PROLLIT framework’) to explore whether each PROM covered important and relevant concepts.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims

Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


Aims

The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS).

Methods

A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1745 - 1753
1 Dec 2021
Walinga AB Stornebrink T Langerhuizen DWG Struijs PAA Kerkhoffs GMMJ Janssen SJ

Aims

This study aimed to answer two questions: what are the best diagnostic methods for diagnosing bacterial arthritis of a native joint?; and what are the most commonly used definitions for bacterial arthritis of a native joint?

Methods

We performed a search of PubMed, Embase, and Cochrane libraries for relevant studies published between January 1980 and April 2020. Of 3,209 identified studies, we included 27 after full screening. Sensitivity, specificity, area under the curve, and Youden index of diagnostic tests were extracted from included studies. We grouped test characteristics per diagnostic modality. We extracted the definitions used to establish a definitive diagnosis of bacterial arthritis of a native joint per study.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 701 - 708
1 Oct 2020
Chen X Li H Zhu S Wang Y Qian W

Aims

The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising biomarker in diagnosing PJI. However, there is controversy regarding its diagnostic value. We aim to investigate the diagnostic value of D-dimer in comparison to ESR and CRP.

Methods

PubMed, Embase, and the Cochrane Library were searched in February 2020 to identify articles reporting on the diagnostic value of D-dimer on PJI. Pooled analysis was conducted to investigate the diagnostic value of D-dimer, CRP, and ESR.