Advertisement for orthosearch.org.uk
Results 1 - 78 of 78
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 273 - 279
1 Feb 2007
Chuter GSJ Cloke DJ Mahomed A Partington PF Green SM

There are many methods for analysing wear volume in failed polyethylene acetabular components. We compared a radiological technique with three recognised ex vivo methods of measurement. We tested 18 ultra-high-molecular-weight polyethylene acetabular components revised for wear and aseptic loosening, of which 13 had pre-revision radiographs, from which the wear volume was calculated based upon the linear wear. We used a shadowgraph technique on silicone casts of all of the retrievals and a coordinate measuring method on the components directly. For these techniques, the wear vector was calculated for each component and the wear volume extrapolated using mathematical equations. The volumetric wear was also measured directly using a fluid-displacement method. The results of each technique were compared. The series had high wear volumes (mean 1385 mm. 3. ; 730 to 1850) and high wear rates (mean 205 mm. 3. /year; 92 to 363). There were wide variations in the measurements of wear volume between the radiological and the other techniques. Radiograph-derived wear volume correlated poorly with that of the fluid-displacement method, co-ordinate measuring method and shadowgraph methods, becoming less accurate as the wear increased. The mean overestimation in radiological wear volume was 47.7% of the fluid-displacement method wear volume. Fluid-displacement method, coordinate measuring method and shadowgraph determinations of wear volume were all better than that of the radiograph-derived linear measurements since they took into account the direction of wear. However, only radiological techniques can be used in vivo and remain useful for monitoring linear wear in the clinical setting. Interpretation of radiological measurements of acetabular wear must be done judiciously in the clinical setting. In vitro laboratory techniques, in particular the fluid-displacement method, remain the most accurate and reliable methods of assessing the wear of acetabular polyethylene


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 977 - 982
1 Jul 2009
Terrier A Merlini F Pioletti DP Farron A

Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm. 3. for the anatomical prosthesis, but 44.6 mm. 3. for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required


Bone & Joint Research
Vol. 4, Issue 3 | Pages 29 - 37
1 Mar 2015
Halim T Clarke IC Burgett-Moreno MD Donaldson TK Savisaar C Bowsher JG

Objectives. Third-body wear is believed to be one trigger for adverse results with metal-on-metal (MOM) bearings. Impingement and subluxation may release metal particles from MOM replacements. We therefore challenged MOM bearings with relevant debris types of cobalt–chrome alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range 5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments (5 mg) were inserted at ten intervals during the five million cycle (5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their yellow colour. Addition of metal particles at 0.8 Mc turned lubricants black within the first hour of the test and remained so for the duration, while PMMA particles did not change the colour of the lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged 0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc, respectively. . Conclusions. Metal particles turned simulator lubricants black with rates of wear of MOM bearings an order of magnitude higher than with control PMMA particles. This appeared to model the findings of black, periarticular joint tissues and high CoCr wear in failed MOM replacements. The amount of wear debris produced during a 500 000-cycle interval of gait was 30 to 50 times greater than the weight of triggering particle allotment, indicating that MOM bearings were extremely sensitive to third-body wear. Cite this article: Bone Joint Res 2015;4:29–37


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1655 - 1659
1 Dec 2007
Anwar HA Aldam CH Visuvanathan S Hart AJ

The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control. Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different wear debris. This experiment also shows that metal-on-metal hip wear debris is not bacteriocidal


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median trunnion corrosion score was 1 (1 to 3). Conclusions. We have reported a level of trunnionosis for MOP hips with large-diameter heads that were revised for reasons other than trunnionosis, and therefore may be clinically insignificant. Cite this article: H. S. Hothi, D. Kendoff, C. Lausmann, J. Henckel, T. Gehrke, J. Skinner, A. Hart. Clinically insignificant trunnionosis in large-diameter metal-on-polyethylene total hip arthroplasty. Bone Joint Res 2017;6:52–56. DOI: 10.1302/2046-3758.61.BJR-2016-0150.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 345 - 350
1 Mar 1998
Önsten I Carlsson ÅS Besjakov J

We used radiostereometric analysis to compare wear rates between uncemented porous sockets and cemented all-polyethylene sockets in a series of 102 hips randomised for either a Harris-Galante or a Charnley cup. Wear was evaluated in 95 hips at a mean of five years (2 to 7). All hips had a cemented, 22 mm head mono-bloc Charnley stem. The mean annual wear rate was 0.09 mm in the Charnley sockets and 0.10 mm in the Harris-Galante sockets, with no statistically significant differences in wear, migration or rotation. We conclude that, up to five years, the wear characteristics of the modular and porous Harris-Galante socket resemble that of the Charnley socket


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 742 - 750
1 Jul 2001
Kim Y Kim J Cho S

We have reviewed 70 patients with bilateral simultaneous total hip arthroplasties to determine the rate of failure and to compare polyethylene wear and osteolysis between an implant with a cobalt-chrome head and Hylamer liner with that of a zirconia head and Hylamer liner. The mean thickness of the polyethylene liner was 11.0 mm (8.8 to 12.2) in the hip with a zirconia head and 10.7 mm (8.8 to 12.2) in that with a cobalt-chrome head. At follow-up at 6.4 years no acetabular or femoral component had been revised for aseptic loosening and no acetabular or femoral component was loose according to radiological criteria in both the cemented and cementless groups. The mean rate of linear wear and annual wear rate were highest in the 22 mm zirconia femoral head (1.25 mm (SD 1.05) and 0.21 mm (SD 0.18), respectively) and lowest in the 22 mm cobalt-chrome femoral head (0.70 mm (SD 0.39) and 0.12 mm (SD 0.07), respectively). The mean volumetric wear was highest in the 28 mm zirconia femoral head (730.79 mm. 3. ) and lowest in the 22 mm cobalt-chrome femoral head (264.67 mm. 3. ), but if the results were compared by size of the femoral head and type of material there was no statistical difference (p > 0.05). Sequential measurements of annual wear showed that the zirconia femoral head had a relatively higher rate of penetration than the cobalt-chrome head over the first three years; thereafter the rate of wear was reduced and compared favourably with that of cobalt-chrome heads. There was a statistically significant relationship between the wear of the polyethylene liner and the age of the patient, male gender and the degree of abduction angle of the cup, but not diagnosis, weight, hip score, range of movement, or amount of anteversion. Osteolysis was identified on both sides of the acetabulum in six patients (9%). Of 12 hips with acetabular osteolysis, six had a 28 mm cobalt-chrome femoral head and the remaining six a 28 mm zirconia head. Osteolysis was observed in zones 1A and 7A of the femur in two hips (3%) with a 28 mm zirconia head (cemented hip) and in four (6%) with a 28 mm cobalt-chrome femoral head (cementless hip). Our findings suggest that although the performance of a zirconia femoral head with a Hylamer liner was not statistically different from that of a cobalt-chrome femoral head and Hylamer liner, there was a trend for the zirconia head to be worse than the cobalt-chrome femoral head


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 331 - 336
1 Mar 1997
Kusaba A Kuroki Y

We retrieved 159 femoral heads at revision surgery to determine changes in surface configuration. Macroscopic wear of the head was observed in three bipolar hip prostheses as a result of three-body wear. There was a considerable change in surface roughness in the internal articulation of bipolar hip prostheses. Roughness in alumina heads was almost the same as that in new cobalt-chromium heads. The annual linear wear rate of polyethylene cups with alumina heads was less than that of cups with cobalt-chromium alloy heads. Polyethylene wear was increased in the prostheses which had increased roughness of the head


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated. We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 447 - 451
1 Apr 2002
Eggli S z’Brun S Gerber C Ganz R

In this prospective, randomised study, we have compared the wear rate of cemented, acetabular polyethylene cups articulating with either a 22 mm or a 32 mm cobalt-chromium head. We evaluated 89 patients who had a total of 484 radiographs. The mean follow-up period was 71.4 months (SD 29.1). All the radiographs were digitised and electronically measured. The linear wear rate was significantly higher during the first two years and decreased after this period to a constant value. We suggest that this is partly due to a ‘run-in’ process caused by irregularities between surfaces of the cup and head and an initial plastic deformation of the polyethylene. The mean volumetric wear was 120.3 mm. 3. /year for the 32 mm head, which was significantly higher than the 41.5 mm. 3. /year for the 22 mm heads. The mean linear wear rate was not significantly different. We were, however, unable to find radiological signs of osteolysis in the patients who had higher wear rates


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 901 - 909
1 Aug 2000
Böhler M Mochida Y Bauer TW Plenk H Salzer M

We compared wear particles from two different designs of total hip arthroplasty with polycrystalline alumina-ceramic bearings of different production periods (group 1, before ISO 6474: group 2, according to ISO 6474). The neocapsules and interfacial connective tissue membranes were retrieved after mean implantation times of 131 months and 38 months, respectively. Specimen blocks were freed from embedding media, either methylmethacrylate or paraffin and digested in concentrated nitric acid. Particles were then counted and their sizes and composition determined by SEM and energy-dispersive x-ray analysis (EDXA). The mean numbers and sizes of most alumina wear particles did not differ for both production periods, but the larger sizes of particle in group 1 point to more severe surface destruction. The increased metal wear in group 2 was apparently due to alumina-induced abrasion of the stems. In this study the concentrations of particles in the periprosthetic tissues were 2 to 22 times lower than those observed previously with polyethylene and alumina/polyethylene wear couples


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1067 - 1072
1 Nov 1998
Hall RM Siney P Wroblewski BM Unsworth A

The direction of wear in the acetabular socket has implications for the amount of debris that is generated during movement, for the magnitude of eccentric loading and for the incidence of impingement of the neck. We observed the direction of penetration with respect to a global co-ordinate system in 84 acetabular components retrieved at reoperation. The mean direction of wear relative to the open face of the sockets was found to be 37° with a range from 0° to 87°. For those values determined using the inclination of the socket on the prerevision radiograph, the mean direction of penetration in the coronal plane had a lateral, rather than a medial, component. The mean angle was 84° (SD 17°) with respect to the horizontal. The angle of penetration was found to correlate significantly with the depth, in that the lateral component became larger as the wear progressed. There was also a significant correlation between the rate of penetration and the direction of wear. Despite the theoretical advantage of penetration in the superolateral direction, i.e., along the margin of the socket, in reducing the probability of impingement of the neck, no significant correlation was seen between the angle of penetration and the period of use in vivo. This may suggest that impingement of the femoral neck on the rim of the socket may not be the dominant factor in loosening of the socket but can still be important in a few cases


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 598 - 606
1 May 2004
Daley B Doherty AT Fairman B Case CP

Wear debris was extracted from 21 worn hip and knee replacements. Its mutagenic effects were tested on human cells in tissue culture using the micronucleus assay and fluorescent in situ hybridisation. The extracted wear debris increased the level of micronuclei in a linear dose-dependent manner but with a tenfold difference between samples. The concentration of titanium +/− vanadium and aluminium within the wear debris was linearly related both to the level of centromere-positive micronuclei in tissue culture, indicating an aneuploid event, and to the level of aneuploidy in vivo in peripheral blood lymphocytes. The concentration of cobalt and chromium +/− nickel and molybdenum in the wear debris correlated with the total index of micronuclei in tissue culture, both centromere-positive and centromere-negative i.e. both chromosomal breakage and aneuploidy events. The results show that wear debris can damage chromosomes in a dose-dependent manner which is specific to the type of metal. The results from studies in vitro correlate with those in vivo and suggest that the wear debris from a worn implant is at least partly responsible for the chromosomal damage which is seen in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 894 - 899
1 Sep 1998
Minakawa H Stone MH Wroblewski BM Lancaster JG Ingham E Fisher J

We examined stainless-steel, cobalt-chrome, titanium and alumina and zirconia ceramic femoral heads retrieved at revision surgery. All the heads had articulated against ultra-high-molecular-weight-polyethylene (UHMWPE) acetabular cups. We studied the simulation of third-body damage and the wear of UHMWPE against the various materials used for the heads. The surfaces of the retrieved heads were analysed using a two-dimensional contacting profilometer. Third-body damage was characterised by the mean height of the scratches above the mean line (R. pm. ). The alumina ceramic and zirconia ceramic retrieved heads were found to have significantly less damage. In laboratory studies the ceramics were also more resistant to simulated third-body damage than the metal alloys. We studied the wear of UHMWPE against the damaged counterfaces in simple configuration tests. The damaged ceramics produced less polyethylene wear than the damaged metal counterfaces. The wear factor of UHMWPE against the damaged materials was dependent on the amount of damage to the counterface (R. p. ). Our study has shown the benefit of using the harder and more damage-resistant ceramic materials for femoral heads


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 340 - 344
1 Mar 1998
Besong AA Tipper JL Ingham E Stone MH Wroblewski BM Fisher J

Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethylene. Using a tri-pin-on-disc tribometer we studied the effect of ageing for ten years after gamma irradiation in air on the volumetric wear, particle size distribution and the number of particles produced by UHMWPE when sliding against a stainless-steel counterface. The aged and irradiated material produced six times more volumetric wear and 34 times more wear particles per unit load per unit sliding distance than non-sterilised UHMWPE. Our findings indicate that oxidative degradation of polyethylene after gamma irradiation in air with ageing produces more wear


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 311 - 315
1 Mar 1997
Rogers SD Howie DW Graves SE Pearcy MJ Haynes DR

Our aim was to determine whether in vitro studies would detect differences in the cellular response to wear particles of two titanium alloys commonly used in the manufacture of joint replacement prostheses. Particles were of the order of 1 μm in diameter representative of those found adjacent to failed prostheses. Exposure of human monocytes to titanium 6-aluminium 4- vanadium (TiAlV) at concentrations of 4 x 10. 7. particles/ml produced a mean prostaglandin E. 2. release of 2627.6 pM; this was significantly higher than the 317.4 pM induced by titanium 6-aluminium 7-niobium alloy (TiAlNb) particles (p = 0.006). Commercially-pure titanium particles induced a release of 347.8 pM. In addition, TiAlV stimulated significantly more release of the other cell mediators, interleukin-1, tumour necrosis factor and interleukin-6. At lower concentrations of particles there was less mediator release and less obvious differences between materials. None of the materials caused significant toxicity. The levels of inflammatory mediators released by phagocytic cells in response to wear particles may influence the amount of periprosthetic bone loss. Our findings have shown that in vitro studies can detect differences in cellular response induced by particles of similar titanium alloys in common clinical use, although in vivo studies have shown little difference. While in vitro studies should not be used as the only form of assessment, they must be considered when assessing the relative biocompatibility of different implant materials


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 837 - 843
1 Sep 1997
Van Der Vis HM Marti RK Tigchelaar W Schüller HM Van Noorden CJF

We examined the cellular responses to various particles injected into the knees and the intramedullary femoral cavities of rats in the presence of polymethyl-methacrylate (PMMA) plugs. The intra-articular particles were mainly ingested by synovial fibroblasts. Increased numbers of macrophages were not detected and there was only a slight increase in synovial thickness. Cellular responses in the intramedullary space were similarly mild and bone resorption around the PMMA plug did not occur. Bone formation was inhibited only by polyethylene particles. In contrast to current views, our study shows that wear particles per se do not initiate bone resorption


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 128 - 136
1 Jan 2002
Böhler M Kanz F Schwarz B Steffan I Walter A Plenk H Knahr K

We revised seven alumina-blasted cementless hip prostheses (Ti-alloy stems, cp Ti threaded sockets) with low- or high-carbon Co-alloy bearings at a mean of 20.1 months after implantation because of pain and loosening. Histological examination of the retrieved periprosthetic tissues from two cases in which the implant was stable and three in which the socket was loose showed macrophages with basophilic granules containing metal and alumina wear particles and lymph-cell infiltrates. In one of the two cases of stem loosening the thickened neocapsule also contained definite lymphatic follicles and gross lymphocyte/plasma-cell infiltrates. Spectrometric determination of the concentration of elements in periprosthetic tissues from six cases was compared with that of joint capsules from five control patients undergoing primary hip surgery. In the revisions the mean concentration of implant-relevant elements was 693.85 μg/g dry tissue. In addition to Cr (15.2%), Co (4.3%), and Ti (10.3%), Al was predominant (68.1%) and all concentrations were significantly higher (p < 0.001) than those in the control tissues. The annual rates of linear wear were calculated for six implants. The mean value was 11.1 μm (heads 6.25 μm, inserts 4.82 μm). SEM/EDXA showed numerous fine scratches and deep furrows containing alumina particles in loosened sockets, and stems showed contamination with adhering or impacted alumina particles of between 2 and 50 μm in size


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives. Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. Methods. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues. Results. The pull-off force of the head increased as the stiffness of the impactor tip increased but without increasing the force transmitted through the springs (patient). Increasing the impaction energy increased the pull-off force but also increased the force transmitted through the springs. Conclusions. To limit wear and corrosion, manufacturers should maximize the stiffness of the impactor tool but without damaging the surface of the head. This strategy will maximize the stability of the head on the stem for a given applied energy, without influencing the force transmitted through the patient’s tissues. Current impactor designs already appear to approach this limit. Increasing the applied energy (which is dependent on the mass of the hammer and square of the contact speed) increases the stability of the modular connection but proportionally increases the force transmitted through the patient’s tissues, as well as to the surface of the head, and should be restricted to safe levels. Cite this article: A. Krull, M. M. Morlock, N. E. Bishop. Maximizing the fixation strength of modular components by impaction without tissue damage. Bone Joint Res 2018;7:196–204. DOI: 10.1302/2046-3758.72.BJR-2017-0078.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co. 2+. , decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion. These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co. 2+. in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 598 - 603
1 May 2001
Nevelos JE Prudhommeaux F Hamadouche M Doyle C Ingham E Meunier A Nevelos AB Sedel L Fisher J

We compared and quantified the modes of failure and patterns of wear of 11 Mittelmeier and 11 Ceraver-Ostal retrieved alumina-alumina hip prostheses with reference to the corresponding clinical and radiological histories. Macroscopic wear was assessed using a three-dimensional co-ordinate measuring machine. Talysurf contacting profilometry was used to measure surface roughness on a microscopic scale and SEM to determine mechanisms of wear at the submicron level. The components were classified into one of three categories of wear: low (no visible/measurable wear), stripe (elliptical wear stripe on the heads and larger worn areas on the cups) and severe (macroscopic wear, large volumes of material lost). Overall, the volumetric wear of the alumina-alumina prostheses was substantially less than the widely used metal and ceramic-on-polyethylene combinations. By identifying and eliminating the factors which accelerate wear, it is expected that the lifetime of these devices can be further increased


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 902 - 911
1 Aug 2001
Haynes DR Crotti TN Potter AE Loric M Atkins GJ Howie DW Findlay DM

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss. Cells isolated from periprosthetic tissues containing wear particles expressed mRNA encoding for the pro-osteoclastogenic molecules, RANKL, its receptor RANK, monocyte colony-stimulating factor (M-CSF), interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6, and soluble IL-6 receptor, as well as OPG. Osteoclasts formed from cells isolated from periprosthetic tissues in the presence and absence of human osteoblastic cells. When osteoclasts formed in the absence of osteoblastic cells, markedly higher levels of RANKL mRNA relative to OPG mRNA were expressed. Particles of prosthetic materials also stimulated human monocytes to express osteoclastogenic molecules in vitro. Our results suggest that ingestion of prosthetic wear particles by macrophages results in expression of osteoclast-differentiating molecules and the stimulation of macrophage differentiation into osteoclasts


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear. In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA. Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris. Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 280 - 285
1 Mar 1996
Wroblewski BM Siney PD Dowson D Collins SN

We report the findings from independent prospective clinical and laboratory-based joint-simulator studies of the performance of ceramic femoral heads of 22.225 mm diameter in cross-linked polyethylene (XLP) acetabular cups. We found remarkable qualitative and quantitative agreement between the clinical and simulator results for the wear characteristics with time, and confirmed that ceramic femoral heads penetrate the XLP cups at only about half the rate of otherwise comparable metal heads. In the clinical study, 19 hips in 17 patients were followed for an average of 77 months. In the hip-joint simulator a similar prosthesis was tested for 7.3 million cycles. Both clinical and simulator results showed relatively high rates of penetration over the first 18 months or 1.5 million cycles, followed by a very much lower wear thereafter. Once an initial bedding-in of 0.2 mm to 0.4 mm had taken place the subsequent rates of penetration were very small. The initial clinical wear during bedding-in averaged 0.29 mm/year; subsequent progression was an order of magnitude lower at about 0.022 mm/year, lower than the 0.07 mm/year in metal-to-UHMWP Charnley LFAs. Our results show the excellent tribological features of alumina-ceramic-to-XLP implants, and also confirm the value of well-designed joint simulators for the evaluation of total joint replacements


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button


Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives. We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator. Methods. This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale). Results. The geko device was effective in significantly increasing venous blood flow in the lower limb both with a plaster cast (mean difference 11.5 cm/sec. -1. ; p = 0.001 to 0.13) and without a plaster cast (mean difference 7.7 cm/sec. -1. ; p = 0.001 to 0.75). Posture also had a significant effect on peak venous blood flow when the cast was on and the geko inactive (p = 0.003 to 0.69), although these differences were less pronounced than the effect of the geko (mean difference 3.1 cm/sec. -1. (-6.5 to 10)). The geko device was well tolerated, with participants generally reporting only mild discomfort using the device. Conclusion. The geko device increases venous blood flow in the lower limb, offering a potential mechanical thromboprolylaxis for patients in a cast. Cite this article: Bone Joint Res 2013;2:179–85


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro. The results show that pressure alone stimulated the secretion of more M-CSF and PGE. 2. when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE. 2. , when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE. 2. were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 767 - 773
1 Jul 2002
Skoglund B Larsson L Aspenberg PA

Wear particles commonly used for experiments may carry adherent endotoxin on their surfaces, which may be responsible for the observed effects. In this study, we attached titanium plates to the tibiae of 20 rats. After osseointegration, endotoxin-contaminated or uncontaminated high-density-polyethylene (HDPE) particles were applied. Contaminated specimens showed a dramatic resorption of bone after seven days but new bone filled the site again at 21 days. Uncontaminated specimens showed no resorption. In 18 rats we implanted intramuscularly discs of ultra-high-molecular-weight polyethylene (UHMWPE) with baseline or excess contamination of endotoxin. Excess endotoxin disappeared within 24 hours and the amount of endotoxin remained at baseline level (contamination from production). Uncontaminated titanium discs did not adsorb endotoxin in vivo. The endotoxin was measured by analytical chemistry. Locally-applied endotoxin stimulated bone resorption similarly to that in experiments with wear particles. Endotoxin on the surface of implants and particles appeared to be inactivated in situ. A clean implant surface did not adsorb endotoxin. Our results suggest that endotoxin adhering to orthopaedic implants is not a major cause for concern


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 849 - 856
1 Sep 1997
Wang W Ferguson DJP Quinn JMW Simpson AHRW Athanasou NA

Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light microscopy, energy-dispersive X-ray analysis and SEM. Giant cells containing phagocytosed particles were seen to be associated with the formation of resorption lacunae. Osteoclasts containing particles were also calcitonin-receptor-positive and showed an inhibitory response to calcitonin. Our findings demonstrate that osteoclasts are capable of phagocytosing particles of a wide range of size, including particles of polymeric and metallic bio-materials found in periprosthetic tissues, and that after particle phagocytosis, they remain fully functional, hormone-responsive, bone-resorbing cells


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 155 - 162
1 Jan 1999
Nakashima Y Sun D Trindade MCD Chun LE Song Y Goodman SB Schurman DJ Maloney WJ Smith RL

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 467 - 474
1 May 1997
Hukkanen M Corbett SA Batten J Konttinen YT McCarthy ID Maclouf J Santavirta S Hughes SPF Polak JM

Aseptic loosening is a major cause of failure of total hip arthroplasty. The adverse tissue response to prosthetic wear particles, with activation of cytokine and prostanoid production, contributes to bone loss around the implants. We have investigated the possibility that inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) are expressed in macrophages in the pseudomembrane at the bone-implant interface, thereby contributing to the periprosthetic bone resorption. We also assessed whether peroxynitrite, a nitric oxide (NO)-derived oxidant associated with cellular injury, is generated in the membrane. Enzymatic activity of iNOS was measured using the arginine-citrulline assay technique and prostaglandin E. 2. (PGE. 2. ), as an indicator of COX-2 activity, was measured using an enzyme immunoassay. Cellular immunoreactivity for iNOS, nitrotyrosine (a marker of peroxynitrite-induced cellular injury) and COX-2 was assessed by quantitative peroxidase immunocytochemistry while immunofluorescence methods were used for subsequent co-localisation studies with CD68. +. macrophages. The presence of calcium-independent iNOS activity and PGE. 2. production was confirmed in the homogenized interface membrane. Immunocytochemistry showed that periprosthetic CD68. +. wear-debris-laden macrophages were the most prominent cell type immunoreactive for iNOS, nitrotyrosine and COX-2. Other periprosthetic inflammatory and resident cell types were also found to immunolocalise nitrotyrosine thereby suggesting peroxynitrite-induced protein nitrosylation and cellular damage not only in NO-producing CD68. +. macrophages, but also in their neighbouring cells. These data indicate that both iNOS and COX-2 are expressed by CD68. +. macrophages in the interface membrane and peroxynitrite-induced cellular damage is evident in such tissue. If high-output NO and peroxynitrite generation were to cause macrophage cell death, this would result in the release of phagocytosed wear debris into the extracellular matrix. A detrimental cycle of events would then be established with further phagocytosis by newly-recruited inflammatory cells and subsequent NO, peroxynitrite and prostanoid synthesis. Since both NO and have been implicated in the induction and PGE. 2. maintenance of chronic inflammation with resulting loss of bone, and peroxynitrite in the pathogenesis of disease states, they may be central to the pathogenesis of aseptic loosening


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 7 | Pages 1075 - 1081
1 Sep 2001
Doherty AT Howell RT Ellis LA Bisbinas I Learmonth ID Newson R Case CP

The long-term biological effects of wear debris are unknown. We have investigated whether there is any evidence of cumulative mutagenic damage in peripheral blood lymphocytes of patients undergoing revision arthroplasty of predominantly metal-on-plastic total hip replacements compared with those at primary arthroplasty. There was a threefold increase in aneuploidy and a twofold increase in chromosomal translocations which could not be explained by the confounding variables of smoking, gender, age and diagnostic radiographs. In the patients with TiVaAl prostheses there was a fivefold increase in aneuploidy but no increase in chromosomal translocations. By contrast, in patients with cobalt-chrome prostheses there was a 2.5-fold increase in aneuploidy and a 3.5-fold increase in chromosomal translocations. In six patients with stainless-steel prostheses there was no increase in either aneuploidy or chromosomal translocations. Our results suggest that future epidemiological studies of the putative long-term risks of joint replacement should take into account the type of alloy used in the prosthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 5 | Pages 767 - 771
1 Jul 2001
Biedermann R Stöckl B Krismer M Mayrhofer P Ornstein E Franzén H

Our aim was to determine whether tantalum markers improved the accuracy and/or precision of methods for the measurement of migration in total hip replacement based on conventional measurements without mathematical correction of the data, and with Ein Bild Roentgen Analyse – Femoral Component Analysis (EBRA-FCA) which allows a computerised correction. Three observers independently analysed 13 series of roentgen-stereophotogrammetric-analysis (RSA)-compatible radiographs (88). Data were obtained from conventional measurements, EBRA-FCA and the RSA method and all the results were compared with the RSA data. Radiological evaluation was also used to quantify in how many radiographs the intraosseous position of the bone markers had been simulated. The results showed that tantalum markers improve reliability whereas they do not affect accuracy for conventional measurements and for EBRA-FCA. Because of the danger of third-body wear their implantation should be avoided unless they are an integral part of the method


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated. The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation. Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 440 - 447
1 Apr 2003
Røkkum M Reigstad A Johansson CB Albrektsson T

Ten acetabular cups coated with hydroxyapatite (HA) had originally been inserted in five primary and five revision total hip replacements. The thickness of the HA was 155 ± 35 μm. The cups, which were well-fixed, were retrieved, with their adherent tissue, at reoperation after 0.3 to 5.8 years because of infection (five hips), wear of polyethylene (three hips), and instability (two hips). Undecalcified sections showed a direct contact between bone and osteoid-like tissue which had formed directly onto the HA coating. The area within the threads and their mirror images, as well as the implant-tissue interfaces consisted of similar amounts of bone and soft tissue. Degradation of HA was seen in all hips. The mean thickness of the remaining HA coating was 97 μm (95% CI 94 to 101). The metal interface comprised 66% HA. The HA-tissue interface contained more bone than soft tissue (p = 0.001), whereas the metal-tissue interface included more soft tissue than bone (p = 0.019). Soft tissue at the implant interface and poor replacement of HA by bone may interfere with long-term fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 988 - 994
1 Nov 1997
Haynes DR Hay SJ Rogers SD Ohta S Howie DW Graves SE

Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E. 2. (PGE. 2. ). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE. 2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE. 2. release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 441 - 447
1 Apr 2001
Rahbek O Overgaard S Lind M Bendix K Bünger C Søballe K

We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 913 - 917
1 Aug 2003
Clarke MT Lee PTH Arora A Villar RN

Metal-on-metal (MOM) bearings for hip arthroplasty are increasing in popularity. Concern remains, however, regarding the potential toxicological effects of the metal ions which these bearings release. The serum levels of cobalt and chromium in 22 patients who had undergone MOM resurfacing arthroplasty were compared with a matched group of 22 patients who had undergone 28 mm MOM total hip arthroplasty (THA). At a median of 16 months (7 to 56) after resurfacing arthroplasty, we found the median serum levels of cobalt and chromium to be 38 nmol/l (14 to 44) and 53 nmol/l (23 to 165) respectively. These were significantly greater than the levels after 28 mm MOM THA which were 22 nmol/l (15 to 87, p = 0.021) and 19 nmol/l (2 to 58, p < 0.001) respectively. Since the upper limit for normal patients without implants is typically 5 nmol/l, both groups had significantly raised levels of metal ions. MOM bearings of large diameter, however, result in a greater systemic exposure of cobalt and chromium ions than bearings of small diameter. This may be of relevance for potential long-term side-effects. It is not known to what extent this difference is due to corrosion of the surfaces of the component or of the wear particles produced


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 118 - 123
1 Jan 2001
Coathup MJ Blunn GW Flynn N Williams C Thomas NP

We investigated the implant-bone interface around one design of femoral stem, proximally coated with either a plasma-sprayed porous coating (plain porous) or a hydroxyapatite porous coating (porous HA), or which had been grit-blasted (Interlok). Of 165 patients implanted with a Bimetric hip hemiarthroplasty (Biomet, Bridgend, UK) specimens were retrieved from 58 at post-mortem. We estimated ingrowth and attachment of bone to the surface of the implant in 21 of these, eight plain porous, seven porous HA and six Interlok, using image analysis and light morphometric techniques. The amount of HA coating was also quantified. There was significantly more ingrowth (p = 0.012) and attachment of bone (p > 0.05) to the porous HA surface (mean bone ingrowth 29.093 ± 2.019%; mean bone attachment 37.287 ± 2.489%) than to the plain porous surface (mean bone ingrowth 21.762 ± 2.068%; mean bone attachment 18.9411 ± 1.971%). There was no significant difference in attachment between the plain porous and Interlok surfaces. Bone grew more evenly over the surface of the HA coating whereas on the porous surface, bone ingrowth and attachment occurred more on the distal and medial parts of the coated surface. No significant differences in the volume of HA were found with the passage of time. This study shows that HA coating increases the amount of ingrowth and attachment of bone and leads to a more even distribution of bone over the surface of the implant. This may have implications in reducing stress shielding and limiting osteolysis induced by wear particles


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives

The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI).

Methods

The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 183 - 186
1 Jun 2014
Wyatt MC Jesani S Frampton C Devane P Horne JG

Objectives

Our study aimed to examine not only the incidence but also the impact of noise from two types of total hip replacement articulations: ceramic-on-ceramic and ceramic-on-polyethylene.

Methods

We performed a case-controlled study comparing subjective and objective questionnaire scores of patients receiving a ceramic-on-ceramic or a ceramic-on-polyethylene total hip replacement by a single surgeon.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


Bone & Joint Research
Vol. 4, Issue 4 | Pages 56 - 64
1 Apr 2015
Lv YM Yu QS

Objectives

The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility.

Methods

The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated.


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives

Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips.

Methods

Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women.


Bone & Joint Research
Vol. 1, Issue 11 | Pages 297 - 309
1 Nov 2012
McIlwraith CW Frisbie DD Kawcak CE

Osteoarthritis (OA) is an important cause of pain, disability and economic loss in humans, and is similarly important in the horse. Recent knowledge on post-traumatic OA has suggested opportunities for early intervention, but it is difficult to identify the appropriate time of these interventions. The horse provides two useful mechanisms to answer these questions: 1) extensive experience with clinical OA in horses; and 2) use of a consistently predictable model of OA that can help study early pathobiological events, define targets for therapeutic intervention and then test these putative therapies. This paper summarises the syndromes of clinical OA in horses including pathogenesis, diagnosis and treatment, and details controlled studies of various treatment options using an equine model of clinical OA.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 835 - 842
1 Jun 2009
Hart AJ Skinner JA Winship P Faria N Kulinskaya E Webster D Muirhead-Allwood S Aldam CH Anwar H Powell JJ

We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged < 65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders.

Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1157 - 1163
1 Aug 2005
Peter B Zambelli P Guicheux J Pioletti DP

In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which osteoblasts could be safely exposed.

Our findings demonstrated that zoledronate did not impair the proliferation of human osteoblasts when used at concentrations below 1 μm. Murine cells can be exposed to concentrations as high as 10 μm.

A concentration of 0.01% of titanium particles did not impair the proliferation of either cell line. Zoledronate affected the alkaline phosphatase activity of murine osteoblasts through a chelation phenomenon. The presence of titanium particles strongly decreased the alkaline phosphatase activity of murine osteoblasts. We did not detect any synergic effect of zoledronate and titanium particles on the behaviour of both human and murine osteoblasts.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system.

After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, sd 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, sd 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, sd 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, sd 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, sd 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement.

We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1401 - 1405
1 Oct 2006
Honl M Schwieger K Salineros M Jacobs J Morlock M Wimmer M

We compared the orientation of the acetabular component obtained by a conventional manual technique with that using five different navigation systems.

Three surgeons carried out five implantations of an acetabular component with each navigation system, as well as manually, using an anatomical model. The orientation of the acetabular component, including inclination and anteversion, and its position was determined using a co-ordinate measuring machine.

The variation of the orientation of the acetabular component was higher in the conventional group compared with the navigated group. One experienced surgeon took significantly less time for the procedure. However, his placement of the component was no better than that of the less experienced surgeons. Significantly better inclination and anteversion (p < 0.001 for both) were obtained using navigation. These parameters were not significantly different between the surgeons when using the conventional technique (p = 0.966).

The use of computer navigation helps a surgeon to orientate the acetabular component with less variation regarding inclination and anteversion.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 972 - 975
1 Jul 2006
Spencer JMF Day RE Sloan KE Beaver RJ

Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component.

A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points.

The difference between the surgeons was found to be highly significant (p < 0.001). The variation was significantly larger for anteversion (sd 9.6°) than for inclination (sd 6.3°). The present method for registering pelvic landmarks shows significant inaccuracy, which highlights the need for improved methods of registration before this technique is considered to be safe.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1298 - 1302
1 Sep 2005
Iesaka K Jaffe WL Jones CM Kummer FJ

We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial bone cements. Immersion in saline for two weeks at 37°C reduced interfacial strength by 56% to 88% after insertion at room temperature and by 28% to 49% after preheating of the stem. The reduction in porosity as a result of preheating ranged from 71% to 100%. Increased porosity correlated with a reduction in shear strength after immersion in saline (r = 0.839, p < 0.01) indicating that interfacial porosity may act as a fluid conduit.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 416 - 420
1 Mar 2005
Bobyn JD Hacking SA Krygier JJ Harvey EJ Little DG Tanzer M

The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score.

All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1256 - 1259
1 Sep 2008
Kedgley AE DeLude JA Drosdowech DS Johnson JA Bicknell RT

This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device.

The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery.

Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur.

These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 545 - 551
1 Apr 2009
Schnurr C Nessler J Meyer C Schild HH Koebke J König DP

The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck.

We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads.

In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens.

When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1522 - 1527
1 Nov 2008
Davis ET Olsen M Zdero R Waddell JP Schemitsch EH

A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens.

The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 258 - 263
1 Feb 2008
Parratte S Kilian P Pauly V Champsaur P Argenson JA

We have evaluated in vitro the accuracy of percutaneous and ultrasound registration as measured in terms of errors in rotation and version relative to the bony anterior pelvic plane in computer-assisted total hip replacement, and analysed the intra- and inter-observer reliability of manual or ultrasound registration.

Four clinicians were asked to perform registration of the landmarks of the anterior pelvic plane on two cadavers. Registration was performed under four different conditions of acquisition. Errors in rotation were not significant. Version errors were significant with percutaneous methods (16.2°; p < 0.001 and 19.25° with surgical draping; p < 0.001), but not with the ultrasound acquisition (6.2°, p = 0.13). Intra-observer repeatability was achieved for all the methods. Inter-observer analysis showed acceptable agreement in the sagittal but not in the frontal plane.

Ultrasound acquisition of the anterior pelvic plane was more reliable in vitro than the cutaneous digitisation currently used.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1528 - 1532
1 Nov 2006
Pun SY Teng MS Kim HT

Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death.

Macroscopically normal human cartilage was exposed to air for 0, 30, 60 or 120 minutes. Selected samples were wetted in lactated Ringer’s solution for ten seconds every ten or 20 minutes. The viability of chondrocytes was measured after three days by Live/Dead staining.

Chondrocyte death correlated with the length of exposure to air and the depth of the cartilage. Drying for 120 minutes caused extensive cell death mainly in the superficial 500 μm of cartilage. Rewetting every ten or 20 minutes significantly decreased cell death.

The superficial zone is most susceptible to desiccation. Loss of superficial chondrocytes likely decreases the production of essential lubricating glycoproteins and contributes to subsequent degeneration. Frequent wetting of cartilage during arthrotomy is therefore essential.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines.

The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion.

The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1105 - 1109
1 Aug 2006
Kandemir U Allaire RB Jolly JT Debski RE McMahon PJ

Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff.

We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°.

Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid inclination based on the angle obtained from a line connecting the superior and inferior points of the glenoid and that connecting the most superior point of the glenoid and the most superior point on the body of the scapula. There were no differences in glenoid inclination (p = 0.34) or glenoid version (p = 0.12) in scapulae from shoulders with an intact rotator cuff and those with a full-thickness tear. Abnormal glenoid orientation was not present in shoulders with a torn rotator cuff.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 741 - 744
1 May 2005
Beaulé PE Krismer M Mayrhofer P Wanner S Le Duff M Mattesich M Stoeckl B Amstutz HC Biedermann R

Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers.

The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 versus 32.2 months (p = 0.001) and 24.8 months (p = 0.012), respectively.

EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1439 - 1444
1 Oct 2005
Davies AP Sood A Lewis AC Newson R Learmonth ID Case CP

Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty.

All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions.

Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 571 - 576
1 Apr 2005
Savarino L Granchi D Cenni E Baldini N Greco M Giunti A

There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV).

The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects.

A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary.