Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 682 - 693
26 Nov 2024
Wahl P Heuberger R Pascucci A Imwinkelried T Fürstner M Icken N Schläppi M Pourzal R Gautier E

Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Methods. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test. Results. A total of 47 specimens from ten brands were included. The TVI was independent of time in vivo. A linear correlation (R. 2. = 0.995) was observed between the old and current TVI standards, except for vitamin E-containing polyethylene. The absorbed irradiation dose calculated from the TVI corresponded to product specifications for all but two products. For one electron beam-irradiated HXLPE, a mean dose of 241% (SD 18%) of specifications was determined. For another, gamma-irradiated HXLPE, a mean 41% (SD 13%) of specifications was determined. Lower wear was observed for higher TVI. Conclusion. The TVI is a reliable measure of the absorbed irradiation dose and does not alter over time in vivo. The products of various brands differ by manufacturing details and consequently cross-linking characteristics. Absorption and penetration of electron radiation and gamma radiation differ, potentially leading to higher degrees of cross-linking for electron radiation. There is a non-linear, inverse correlation between TVI and in vitro wear. The wear resistance of the HXLPE with low TVI was reduced and more comparable to CPE. Cite this article: Bone Joint Res 2024;13(11):682–693


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.