The peri-prosthetic tissue response to wear debris
is complex and influenced by various factors including the size, area
and number of
Objectives. This study aimed to characterise and qualitatively grade the severity of the corrosion
One concern about the fixation of HA-coated implants is the possible disintegration of the surface, with the migration of HA granules into the joint space, producing third-body wear. We report a study of six revisions of HA-coated polyethylene RM cups at 9 to 14 years after successful primary arthroplasty. In all six hips, we found HA granules embedded in the articulating surface of the polyethylene, with abrasive wear of the cup and the metal femoral head. The cup had loosened in four hips and three showed severe osteolysis of the proximal femur. Third-body wear due to HA
Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and
Aims. Early evidence has emerged suggesting that ceramic-on-ceramic
articulations induce a different tissue reaction to ceramic-on-polyethylene
and metal-on-metal bearings. Therefore, the aim of this study was
to investigate the tissue reaction and cellular response to ceramic
total hip arthroplasty (THA) materials in vitro,
as well as the tissue reaction in capsular tissue after revision
surgery of ceramic-on-ceramic THAs. Patients and Methods. We investigated tissue collected at revision surgery from nine
ceramic-on-ceramic articulations. we compared our findings with
tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene
THAs, and four primary osteoarthritis synovial membranes. The latter
were analyzed to assess the amount of tissue fibrosis that might
have been present at the time of implantation to enable evaluation,
in relation to implantation time, of any subsequent response in
the tissues. Results. There was a significant increase in tissue fibrosis with implantation
time for all implant types tested. Interestingly, the tissue fibrosis
in ceramic-on-ceramic THAs was significantly increased compared
with metal-on-metal and ceramic-on-polyethylene. Additionally, we
found ceramic wear
Objectives. Metal-on-metal (MoM) hip resurfacing was introduced into clinical
practice because it was perceived to be a better alternative to
conventional total hip replacement for young and active patients.
However, an increasing number of reports of complications have arisen
focusing on design and orientation of the components, the generation
of metallic wear
Aims. We wished to investigate the influence of metal debris exposure
on the subsequent immune response and resulting soft-tissue injury
following metal-on-metal (MoM) hip arthroplasty. Some reports have
suggested that debris generated from the head-neck taper junction
is more destructive than equivalent doses from metal bearing surfaces. . Patients and Methods. We investigated the influence of the source and volume of metal
debris on chromium (Cr) and cobalt (Co) concentrations in corresponding
blood and hip synovial fluid samples and the observed agglomerated
particle sizes in excised tissues using multiple regression analysis
of prospectively collected data. A total of 199 explanted MoM hips
(177 patients; 132 hips female) were analysed to determine rates
of volumetric wear at the bearing surfaces and taper junctions. . Results. The statistical modelling suggested that a greater source contribution
of metal debris from the taper junction was associated with smaller
aggregated
This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.Aims
Methods
We describe three prostheses with cemented titanium-alloy stems and Al. 2. O. 3. ceramic femoral heads which had to be revised after a mean period of implantation of 78 months. In each case, the neck of the prosthesis had been so severely worn that the profile was elliptical rather than circular. There was severe metallosis of the periprosthetic tissues. Metal
This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection. A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.Aims
Methods
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods
A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade. Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.Aims
Methods
Symptomatic cobalt toxicity from a failed total
hip replacement is a rare but devastating complication. It has been reported
following revision of fractured ceramic components, as well as in
patients with failed metal-on-metal articulations. Potential clinical
findings include fatigue, weakness, hypothyroidism, cardiomyopathy,
polycythaemia, visual and hearing impairment, cognitive dysfunction,
and neuropathy. We report a case of an otherwise healthy 46-year-old
patient, who developed progressively worsening symptoms of cobalt
toxicity beginning approximately six months following synovectomy
and revision of a fractured ceramic-on-ceramic total hip replacement
to a metal-on-polyethylene bearing. The whole blood cobalt levels
peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy.
Implant retrieval analysis confirmed a loss of 28.3 g mass of the
cobalt–chromium femoral head as a result of severe abrasive wear
by ceramic
This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA). Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.Aims
Methods
The aim of this study was to obtain detailed long-term data on the cement-bone interface in patients with cemented stems, implanted using the constrained fixation technique. A total of eight stems were removed together with adjacent bone during post-mortem examinations of patients with well-functioning prostheses. Specimens were cut at four defined levels, contact radiographs were obtained for each level, and slices were prepared for histological analysis. Clinical data, clinical radiographs, contact radiographs and histological samples were examined for signs of loosening and remodelling. The mean radiological follow-up was 9.6 years and all stems were well-fixed, based on clinical and radiological criteria. Contact radiographs revealed an incomplete cement mantle but a complete filling of the medullary canal for all implants. Various amounts of polyethylene
Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA
Two major complications of hip replacement are loosening and infection. Reliable differentiation between these pathological processes is difficult since both may be accompanied by similar symptoms. Our aim was to assess the diagnostic ability of triple-phase bone scanning (TPBS) and positron-emission tomography (PET) to detect and differentiate these complications in patients with a hip arthroplasty. Both TPBS and PET were performed in 63 patients (92 prostheses). The radiotracer for PET imaging was . 18. F-fluorodeoxyglucose (FDG). Image interpretation was performed according to qualitative and quantitative criteria although the final diagnosis was based upon either surgical findings or clinical follow-up. The sensitivity, specificity and accuracy of PET was 0.94, 0.95 and 0.95 respectively, compared with 0.68, 0.76 and 0.74 for TPBS. We found that an image interpretation based exclusively upon quantitative criteria was inappropriate because of its low selectivity. The histological examination indicated that increased periprosthetic uptake of FDG in patients with aseptic loosening was caused by wear-induced polyethylene
Large-diameter metal-on-metal (MoM) total hip arthroplasty (THA) has demonstrated unexpected high failure rates and pseudotumour formation. The purpose of this prospective cohort study is to report ten-year results in order to establish revision rate, prevalence of pseudotumour formation, and relation with whole blood cobalt levels. All patients were recalled according to the guidelines of the Dutch Orthopaedic Association. They underwent clinical and radiographical assessments (radiograph and CT scan) of the hip prosthesis and whole blood cobalt ion measurements. Overall, 94 patients (95 hips) fulfilled our requirements for a minimum ten-year follow-up.Aims
Methods
We aimed to evaluate the long-term outcome of highly cross-linked polyethylene (HXLPE) cemented acetabular components and assess whether any radiolucent lines (RLLs) which arose were progressive. We retrospectively reviewed 170 patients who underwent 187 total hip arthroplasties at two hospitals with a minimum follow-up of ten years. All interventions were performed using the same combination of HXLPE cemented acetabular components with femoral stems made of titanium alloy. Kaplan-Meier survival analysis was performed for the primary endpoint of acetabular component revision surgery for any reason and secondary endpoint of the appearance of RLLs. RLLs that had appeared once were observed over time. We statistically assessed potential relationships between RLLs and a number of factors, including the technique of femoral head autografting and the Japanese Orthopaedic Association score.Aims
Methods
Polyethylene wear of acetabular components is a key factor in the development of periprosthetic osteolysis and wear at the articular surface has been well documented and quantified, but fewer data are available about changes which occur at the backside of the liner. At revision surgery for loosening of the femoral component we retrieved 35 conventional modular acetabular liners of the same design. Linear and volumetric articular wear, backside volumetric change and the volume of the screw-head indentations were quantified. These volumes, clinical data and the results from radiological Ein Bild Röntgen Analyse migration analysis were used to identify potential factors influencing the volumetric articular wear and backside volumetric change. The rate of backside volumetric change was found to be 2.8% of the rate of volumetric articular wear and decreased with increasing liner size. Migrated acetabular components showed significantly higher rates of backside volumetric change plus screw-head indentations than those without migration. The backside volumetric change was at least ten times larger than finite-element simulation had suggested. In a stable acetabular component with well-anchored screws, the amount of backside wear should not cause clinical problems. Impingement of the screw-heads could produce more wear