We report the results of our continued review of 11 total hip arthroplasties using 22.225 mm
We report the results of our continued review of 14 hip arthroplasties using
Aims. Our aim in this study was to describe a continuing review of
11 total hip arthroplasties using 22.225 mm
We present a retrospective series of 170 cemented titanium straight-stem femoral components combined with two types of femoral head: cobalt-chromium (CoCr) alloy (114 heads) and
We examined the behaviour of
The Norwegian Arthroplasty Register has shown that several designs of uncemented femoral stems give good or excellent survivorship. The overall findings for uncemented total hip replacement however, have been disappointing because of poor results with the use of metal-backed acetabular components. In this study, we exclusively investigated the medium-to long-term performance of primary uncemented metal-backed acetabular components. A total of 9113 primary uncemented acetabular components were implanted in 7937 patients between 1987 and 2007. These were included in a prospective, population-based observational study. All the implants were modular and metal-backed with ultra-high-molecular-weight polyethylene liners. The femoral heads were made of stainless steel, cobalt-chrome (CoCr) alloy or
We prospectively assessed the efficacy of a ceramic-on-metal
(CoM) hip bearing with uncemented acetabular and femoral components
in which cobalt–chrome acetabular liners and
At yearly intervals we compared the radiological wear characteristics of 81
We have compared the survival of two hydroxyapatite (HA)-coated cups, 1208 Atoll hemispheric and 2641 Tropic threaded, with cemented Charnley all-polyethylene cups (16 021) using the Cox regression model. The Tropic cup used in combination with an
The Morscher-Spotorno (MS-30) femoral stem is a stainless-steel, straight, three-dimensionally tapered, collarless implant for cemented fixation in total hip replacement. We report the results at ten years of a consecutive series of 124 total hip replacements in 121 patients with the matt-surfaced MS-30 stem and an
This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.Aims
Methods
The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.Aims
Methods
To compare long-term survival of all-cemented and hybrid total hip arthroplasty (THA) using the Exeter Universal stem. Details of 1,086 THAs performed between 1999 and 2005 using the Exeter stem and either a cemented (632) or uncemented acetabular component (454) were collected from local records and the New Zealand Joint Registry. A competing risks regression survival analysis was performed with death as the competing risk with adjustments made for age, sex, approach, and bearing.Aims
Methods
We conducted a prospective study of a delta ceramic total hip
arthroplasty (THA) to determine the rate of ceramic fracture, to
characterise post-operative noise, and to evaluate the mid-term
results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent
cementless THA using a delta ceramic femoral head and liner. At
each follow-up, clinical and radiological outcomes were recorded.
A Kaplan-Meier analysis was undertaken to estimate survival.Aims
Patients and Methods
The practice of removing a well-fixed cementless
femoral component is associated with high morbidity. Ceramic bearing
couples are low wearing and their use minimises the risk of subsequent
further revision due to the production of wear debris. A total of
165 revision hip replacements were performed, in which a polyethylene-lined acetabular
component was revised to a new acetabular component with a ceramic
liner, while retaining the well-fixed femoral component. A titanium
sleeve was placed over the used femoral trunnion, to which a ceramic
head was added. There were 100 alumina and 65 Delta bearing couples
inserted. The mean Harris hip score improved significantly from 71.3 (9.0
to 100.0) pre-operatively to 91.0 (41.0 to 100.0) at a mean follow
up of 4.8 years (2.1 to 12.5) (p <
0.001). No patients reported
squeaking of the hip. There were two fractures of the ceramic head, both in alumina
bearings. No liners were seen to fracture. No fractures were observed
in components made of Delta ceramic. At 8.3 years post-operatively
the survival with any cause of failure as the endpoint was 96.6%
(95% confidence interval (CI) 85.7 to 99.3) for the acetabular component and
94.0% (95% CI 82.1 to 98.4) for the femoral component. The technique of revising the acetabular component in the presence
of a well-fixed femoral component with a ceramic head placed on
a titanium sleeve over the used trunnion is a useful adjunct in
revision hip practice. The use of Delta ceramic is recommended. Cite this article:
It has been suggested that the wear of ultra-high molecular weight polyethylene (UHMWPE) in total hip replacement is substantially reduced when the femoral head is ceramic rather than metal. However, studies of alumina and zirconia ceramic femoral heads on the penetration of an UHMWPE liner The purpose of this study was to examine the surface characteristics of 30 alumina and 24 zirconia ceramic femoral heads and to identify any phase transformation in the zirconia heads. We also studied the penetration rate of alumina and zirconia heads into contemporary UHMWPE liners. The alumina heads had been implanted for a mean of 11.3 years (8.1 to 16.2) and zirconia heads for a mean of 9.8 years (7.5 to 15). The mean surface roughness values of the explanted alumina heads (Ra 40.12 nm and Rpm 578.34 nm) were similar to those for the explanted zirconia heads (Ra 36.21 nm and Rpm 607.34 nm). The mean value of the monoclinic phase of two control zirconia heads was 1% (0.8% to 1.5%) and 1.2% (0.9% to 1.3%), respectively. The mean value of the monoclinic phase of 24 explanted zirconia heads was 7.3% (1% to 26%). In the alumina group, the mean linear penetration rate of the UMWPE liner was 0.10 mm/yr (0.09 to 0.12) in hips with low Ra and Rpm values (13.22 nm and 85.91 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.13 mm/yr (0.07 to 0.23) in hips with high Ra and Rpm values (198.72 nm and 1329 nm, respectively). This difference was significant (p = 0.041). In the zirconia head group, the mean linear penetration rate of the UHMWPE liner was 0.09 mm/yr (0.07 to 0.14) in hips with low Ra and Rpm values (12.78 nm and 92.99 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.12 mm/yr (0.08 to 0.22) in hips with high Ra and Rpm values (199.21 nm and 1381 nm, respectively). This difference was significant (p = 0.039). The explanted zirconia heads which had a minimal phase transformation had similar surface roughness and a similar penetration rate of UHMWPE liner as the explanted alumina head.
A moderator and panel of five experts led an
interactive session in discussing five challenging and interesting patient
case presentations involving surgery of the hip. The hip pathologies
reviewed included failed open reduction internal fixation of subcapital
femoral neck fracture, bilateral hip disease, evaluation of pain
after metal-on-metal hip arthroplasty, avascular necrosis, aseptic
loosening secondary to osteolysis and polyethylene wear, and management
of ceramic femoral head fracture.
A modular layered acetabular component (metal-polyethylene-ceramic) was developed in Japan for use in alumina ceramic-on-ceramic total hip replacement. Between May 1999 and July 2000, we performed 35 alumina ceramic-on-ceramic total hip replacements in 30 consecutive patients, using this layered component and evaluated the clinical and radiological results over a mean follow-up of 5.8 years (5 to 6.5). A total of six hips underwent revision, one for infection, two for dislocation with loosening of the acetabular component, two for alumina liner fractures and one for component dissociation with pelvic osteolysis. There were no fractures of the ceramic heads, and no loosening of the femoral or acetabular component in the unrevised hips was seen at final follow-up. Osteolysis was not observed in any of the unrevised hips. The survivorship analysis at six years after surgery was 83%. The layered acetabular component in our experience, has poor durability because of unexpected mechanical failures including alumina liner fracture and component dissociation.
Our aim in this prospective study was to compare the bone mineral density (BMD) around cementless acetabular and femoral components which were identical in geometry and had the same alumina modular femoral head, but differed in regard to the material of the acetabular liners (alumina ceramic or polyethylene) in 50 patients (100 hips) who had undergone bilateral simultaneous primary total hip replacement. Dual energy X-ray absorptiometry scans of the pelvis and proximal femur were obtained at one week, at one year, and annually thereafter during the five-year period of the study. At the final follow-up, the mean BMD had increased significantly in each group in acetabular zone I of DeLee and Charnley (20% (15% to 26%), p = 0.003), but had decreased in acetabular zone II (24% (18% to 36%) in the alumina group and 25% (17% to 31%) in the polyethylene group, p = 0.001). There was an increase in the mean BMD in zone III of 2% (0.8% to 3.2%) in the alumina group and 1% (0.6% to 2.2%) in the polyethylene group (p = 0.315). There was a decrease in the mean BMD in the calcar region (femoral zone 7) of 15% (8% to 24%) in the alumina group and 14% (6% to 23%) in the polyethylene group (p <
0.001). The mean bone loss in femoral zone 1 of Gruen et al was 2% (1.1% to 3.1%) in the alumina group and 3% (1.3% to 4.3%) in the polyethylene group (p = 0.03), and in femoral zone 6, the mean bone loss was 15% (9% to 27%) in the alumina group and 14% (11% to 29%) in the polyethylene group compared with baseline values. There was an increase in the mean BMD on the final scans in femoral zones 2 (p = 0.04), 3 (p = 0.04), 4 (p = 0.12) and 5 (p = 0.049) in both groups. There was thus no significant difference in the bone remodelling of the acetabulum and femur five years after total hip replacement in those two groups where the only difference was in the acetabular liner.
We compared a modular neck system with a non-modular system in a cementless anatomical total hip replacement (THR). Each group consisted of 74 hips with developmental hip dysplasia. Both groups had the same cementless acetabular component and the same articulation, which consisted of a conventional polyethylene liner and a 28 mm alumina head. The mean follow-up was 14.5 years (13 to 15), at which point there were significant differences in the mean total Harris hip score (modular/non-modular: 98.6 (64 to 100)/93.8 (68 to 100)), the mean range of abduction (32° (15° to 40°)/28 (0° to 40°)), use of a 10° elevated liner (31%/100%), the incidence of osteolysis (27%/79.7%) and the incidence of equal leg lengths (≥ 6 mm, 92%/61%). There was no disassociation or fracture of the modular neck. The modular system reduces the need for an elevated liner, thereby reducing the incidence of osteolysis. It gives a better range of movement and allows the surgeon to make an accurate adjustment of leg length.
Fracture of a ceramic component in total hip
replacement is a rare but potentially catastrophic complication.
The incidence is likely to increase as the use of ceramics becomes
more widespread. We describe such a case, which illustrates how
inadequate initial management will lead to further morbidity and
require additional surgery. We present the case as a warning that
fracture of a ceramic component should be revised to another ceramic-on-ceramic
articulation in order to minimise the risk of further catastrophic
wear.
We report the clinical and radiological outcomes
of a series of contemporary cementless ceramic-on-ceramic total hip
replacements (THRs) at ten years in patients aged ≤ 55 years of
age. Pre- and post-operative activity levels are described. A total
of 120 consecutive ceramic cementless THRs were performed at a single
centre in 110 patients from 1997 to 1999. The mean age of the patients
at operation was 45 years (20 to 55). At ten years, four patients
had died and six were lost to follow-up, comprising ten hips. The
mean post-operative Harris hip score was 94.7 (55 to 100). Radiological
analysis was undertaken in 90 available THRs of the surviving 106
hips at final review: all had evidence of stable bony ingrowth,
with no cases of osteolysis. Wear was undetectable. There were four
revisions. The survival for both components with revision for any
cause as an endpoint was 96.5% (95% confidence interval 94.5 to
98.7). The mean modified University of California, Los Angeles activity
level rose from a mean of 6.4 (4 to 10) pre-operatively to 9.0 (6
to 10) at the ten-year post-operative period. Alumina ceramic-on-ceramic bearings in cementless primary THR
in this series have resulted in good clinical and radiological outcomes
with undetectable rates of wear and excellent function in the demanding
younger patient group at ten years. Cite this article:
This study reviewed the results of a cementless anatomical femoral component to give immediate post-operative stability, and with a narrow distal section in order not to contact the femoral cortex in the diaphysis, ensuring exclusively metaphyseal loading. A total of 471 patients (601 hips) who had a total hip replacement between March 1995 and February 2002 were included in the study. There were 297 men and 174 women. The mean age at the time of operation was 52.7 years (28 to 63). Clinical and radiological evaluation were performed at each follow-up. Bone densitometry was carried out on all patients two weeks after operation and at the final follow-up examination. The mean follow-up was 8.8 years (5 to 12). The mean pre-operative Harris hip score was 41 points (16 to 54), which improved to a mean of 96 (68 to 100) at the final follow-up. No patient complained of thigh pain at any stage. No acetabular or femoral osteolysis was observed and no hip required revision for aseptic loosening of either component. Deep infection occurred in two hips (0.3%) which required revision. One hip (0.2%) required revision of the acetabular component for recurrent dislocation. Bone mineral densitometry revealed a minimal bone loss in the proximal femur. This cementless anatomical femoral component with metaphyseal loading but without distal fixation produced satisfactory fixation and encourages proximal femoral loading.
Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. An Objectives
Methods
To determine the effect of a change in design of a cementless
ceramic acetabular component in fixation and clinical outcome after
total hip arthroplasty We compared 342 hips (302 patients) operated between 1999 and
2005 with a relatively smooth hydroxyapatite coated acetabular component
(group 1), and 337 hips (310 patients) operated between 2006 and
2011 using a similar acetabular component with a macrotexture on
the entire outer surface of the component (group 2). The mean age of
the patients was 53.5 (14 to 70) in group 1 and 53.0 (15 to 70)
in group 2. The mean follow-up was 12.7 years (10 to 17) for group
1 and 7.2 years (4 to 10) for group 2.Aims
Patients and Methods
We investigated factors that were thought to be associated with an increased incidence of squeaking of ceramic-on-ceramic total hip replacements. Between June 1997 and December 2008 the three senior authors implanted 2406 primary total hip replacements with a ceramic-on-ceramic bearing surface. The mean follow-up was 10.6 years. The diagnosis was primary osteoarthritis in each case, and no patient had undergone previous surgery to the hip. We identified 74 squeaking hips (73 patients) giving an incidence of 3.1% at a mean follow-up of 9.5 years (4.1 to 13.3). Taller, heavier and younger patients were significantly more likely to have hips that squeaked. Squeaking hips had a significantly higher range of post-operative internal (p = 0.001) and external rotation (p = 0.003) compared with silent hips. Patients with squeaking hips had significantly higher activity levels (p = 0.009). A squeaking hip was not associated with a significant difference in patient satisfaction (p = 0.24) or Harris hip score (p = 0.34). Four implant position factors enabled good prediction of squeaking. These were high acetabular component inclination, high femoral offset, lateralisation of the hip centre and either high or low acetabular component anteversion. This is the largest study to date to examine patient factors and implant position factors that predispose to squeaking of a ceramic-on-ceramic hip. The results suggest that factors which increase the mechanical forces across the hip joint and factors which increase the risk of neck-to-rim impingement, and therefore edge-loading, are those that predispose to squeaking.
Most published randomised controlled trials which
compare the rates of wear of conventional and cross-linked (XL) polyethylene
(PE) in total hip arthroplasty (THA) have described their use with
a cementless acetabular component. We conducted a prospective randomised study to assess the rates
of penetration of two distinct types of PE in otherwise identical
cemented all-PE acetabular components. A total of 100 consecutive patients for THA were randomised to
receive an acetabular component which had been either highly XL
then remelted or moderately XL then annealed. After a minimum of eight years follow-up, 38 hips in the XL group
and 30 hips in the annealed group had complete data (mean follow-up
of 9.1 years (7.6 to 10.7) and 8.7 years (7.2 to 10.2), respectively).
In the XL group, the steady state rate of penetration from one year
onwards was -0.0002 mm/year ( These results show that the yearly linear rate of femoral head
penetration can be significantly reduced by using a highly XLPE
cemented acetabular component. Cite this article:
This study reports the results of 38 total hip
arthroplasties (THAs) in 33 patients aged <
50 years, using the
JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component.
This represents an update of previous reports of the same cohort
at ten and 16 years, which were reported in 2004 and 2009, respectively.
We describe the survival, radiological and functional outcomes at
a mean follow-up of 21 years (17 to 25). Of the surviving 34 THAs,
one underwent femoral revision for peri-prosthetic fracture after
21 years, and one patient (one hip) was lost to follow-up. Using
aseptic loosening as the end-point, 12 hips (31.5%) needed acetabular
revision but none needed femoral revision, demonstrating 100% survival
(95% confidence interval 89 to 100). In young patients with high demands, the Furlong HAC–coated femoral
component gives excellent long-term results. Cite this article:
We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement.
Large femoral heads have become popular in total
hip replacement (THR) as a method of reducing the risk of dislocation.
However, if large heads are used in ceramic-on-ceramic THR, the
liner must be thinner, which may increase the risk of fracture.
To compare the rates of ceramic fracture and dislocation between
28 mm and 32 mm ceramic heads, 120 hips in 109 patients (51 men
and 58 women, mean age 49.2 years) were randomised to THR with either
a 28 mm or a 32 mm ceramic articulation. A total of 57/60 hips assigned
to the 28 mm group and 55/60 hips assigned to the 32 mm group were
followed for at least five years. No ceramic component fractures
occured in any patient in either group. There was one dislocation
in the 32 mm group and none in the 28 mm group (p = 0.464). No hip
had detectable wear, focal osteolysis or prosthetic loosening. In
our small study the 32 mm ceramic articulation appeared to be safe
in terms of ceramic liner fracture. Cite this article:
Symptomatic hip osteonecrosis is a disabling
condition with a poorly understood aetiology and pathogenesis. Numerous
treatment options for hip osteonecrosis are described, which include
non-operative management and joint preserving procedures, as well
as total hip replacement (THR). Non-operative or joint preserving
treatment may improve outcomes when an early diagnosis is made before
the lesion has become too large or there is radiographic evidence
of femoral head collapse. The presence of a crescent sign, femoral
head flattening, and acetabular involvement indicate a more advanced-stage
disease in which joint preserving options are less effective than
THR. Since many patients present after disease progression, primary
THR is often the only reliable treatment option available. Prior
to the 1990s, outcomes of THR for osteonecrosis were poor. However,
according to recent reports and systemic reviews, it is encouraging
that with the introduction of newer ceramic and/or highly cross-linked
polyethylene bearings as well as highly-porous fixation interfaces,
THR appears to be a reliable option in the management of end-stage
arthritis following hip osteonecrosis in this historically difficult
to treat patient population. Cite this article:
Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA)
are commonly used, but concerns exist regarding ceramic fracture.
This study aims to report the risk of revision for fracture of modern
CoC bearings and identify factors that might influence this risk,
using data from the National Joint Registry (NJR) for England, Wales, Northern
Ireland and the Isle of Man. We analysed data on 223 362 bearings from 111 681 primary CoC
THAs and 182 linked revisions for bearing fracture recorded in the
NJR. We used implant codes to identify ceramic bearing composition
and generated Kaplan-Meier estimates for implant survivorship. Logistic
regression analyses were performed for implant size and patient specific
variables to determine any associated risks for revision.Aims
Patients and Methods
We report on 397 consecutive revision total hip
replacements in 371 patients with a mean clinical and radiological follow-up
of 12.9 years (10 to 17.7). The mean age at surgery was 69 years
(37 to 93). A total of 28 patients (8%) underwent further revision,
including 16 (4%) femoral components. In all 223 patients (56%,
233 hips) died without further revision and 20 patients (5%, 20
hips) were lost to follow-up. Of the remaining patients, 209 (221
hips) were available for clinical assessment and 194 (205 hips)
for radiological review at mean follow-up of 12.9 years (10 to 17.7). The mean Harris Hip Score improved from 58.7 (11 to 92) points
to 80.7 (21 to 100) (p <
0.001) and the mean Merle d’Aubigné and
Postel hip scores at final follow-up were 4.9 (2 to 6), 4.5 (2 to
6) and 4.3 (2 to 6), respectively for pain, mobility and function.
Radiographs showed no lucencies around 186 (90.7%) femoral stems
with stable bony ingrowth seen in 199 stems (97%). The survival
of the S-ROM femoral stem at 15 years with revision for any reason as
the endpoint was 90.5% (95% confidence interval (CI) 85.7 to 93.8)
and with revision for aseptic loosening as the endpoint 99.3% (95%
CI 97.2 to 99.8). We have shown excellent long-term survivorship and good clinical
outcome of a cementless hydroxyapatite proximally-coated modular
femoral stem in revision hip surgery. Cite this article:
In 2004 we described the ten-year prospective results of 38 total hip replacements using the Furlong hydroxyapatite-ceramic-coated femoral component in 35 patients <
50 years old. We have now reviewed the surviving 35 arthroplasties in 33 patients at a mean of 16 years (10.3 to 19.9). The mean age of the surviving patients at the time of operation was 41.3 years (26.0 to 49.0). Of these, eight have undergone revision of their acetabular component for aseptic loosening. None of the femoral components has had revision for aseptic loosening giving a survival rate of 100% at 16 years (95% confidence interval 89% to 100%). The Furlong hydroxyapatite-ceramic-coated femoral component gives excellent long-term survival in young and active patients.
In this paper, we will consider the current role
of metal-on-metal bearings by looking at three subtypes of MoM hip
arthroplasty separately: Hip resurfacing, large head (>
36 mm) MoM
THA and MoM THA with traditional femoral head sizes.
Large-head metal-on-metal (MoM) total hip replacements
(THR) have given rise to concern. Comparative studies of small-head
MoM THRs over a longer follow-up period are lacking. Our objective
was to compare the incidence of complications such as infection,
dislocation, revision, adverse local tissue reactions, mortality
and radiological and clinical outcomes in small-head (28 mm) MoM
and ceramic-on-polyethylene (CoP) THRs up to 12 years post-operatively. A prospective cohort study included 3341 THRs in 2714 patients.
The mean age was 69.1 years (range 24 to 98) and 1848 (55.3%) were
performed in women, with a mean follow-up of 115 months (18 to 201).
There were 883 MoM and 2458 CoP bearings. Crude incidence rates
(cases/1000 person-years) were: infection 1.3 In conclusion, we found similar results for small-head MoM and
CoP bearings up to ten years post-operatively, but after ten years
MoM THRs had a higher risk of all-cause revision. Furthermore, the
presence of an adverse response to metal debris seen in the small-head
MOM group at revision is a cause for concern. Cite this article:
Bioengineering reasons for increased wear and failure of metal-on-metal (MoM) bearings in hip prostheses have been described. Low wear occurs in MoM hips when the centre of the femoral head is concentric with the centre of the acetabular component and the implants are correctly positioned. Translational or rotational malpositioning of the components can lead to the contact-patch of the femoral component being displaced to the rim of the acetabular component, resulting in a ten- to 100-fold increase in wear and metal ion levels. This may cause adverse tissue reactions, loosening of components and failure of the prosthesis.
We analysed 54 alumina ceramic-on-ceramic bearings
from total hip replacements retrieved at one centre after a mean
duration of 3.5 years (0.2 to 10.6)
Increasing follow-up identifies the outcome in younger patients who have undergone total hip replacement (THR) and reveals the true potential for survival of the prosthesis. We identified 28 patients (39 THRs) who had undergone cemented Charnley low friction arthroplasty between 1969 and 2001. Their mean age at operation was 17.9 years (12 to 19) and the maximum follow-up was 34 years. Two patients (4 THRs) were lost to follow-up, 13 (16 THRs) were revised at a mean period of 19.1 years (8 to 34) and 13 (19 THRs) continue to attend regular follow-up at a mean of 12.6 years (2.3 to 29). In this surviving group one acetabular component was radiologically loose and all femoral components were secure. In all the patients the diameter of the femoral head was 22.225 mm with Charnley femoral components used in 29 hips and C-stem femoral components in ten. In young patients who require THR the acetabular bone stock is generally a limiting factor for the size of the component. Excellent long-term results can be obtained with a cemented polyethylene acetabular component and a femoral head of small diameter.
The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values.
The long-term results of grafting with hydroxyapatite granules for acetabular deficiency in revision total hip replacement are not well known. We have evaluated the results of revision using a modular cup with hydroxyapatite grafting for Paprosky type 2 and 3 acetabular defects at a minimum of ten years’ follow-up. We retrospectively reviewed 49 acetabular revisions at a mean of 135 months (120 to 178). There was one type 2B, ten 2C, 28 3A and ten 3B hips. With loosening as the endpoint, the survival rate was 74.2% (95% confidence interval 58.3 to 90.1). Radiologically, four of the type 3A hips (14%) and six of the type 3B hips (60%) showed aseptic loosening with collapse of the hydroxyapatite layer, whereas no loosening occurred in type 2 hips. There was consolidation of the hydroxyapatite layer in 33 hips (66%). Loosening was detected in nine of 29 hips (31%) without cement and in one of 20 hips (5%) with cement (p = 0.03, Fisher’s exact probability test). The linear wear and annual wear rate did not correlate with loosening. These results suggest that the long-term results of hydroxyapatite grafting with cement for type 2 and 3A hips are encouraging.
In a randomised study, 28 patients with a mean age of 62.2 years (32 to 81) with osteoarthritis or avascular necrosis of the hip received either a ceramic-on-ceramic or a metal-on-metal total hip replacement. Apart from the liners the acetabular and femoral components were made of Ti-Al-Nb alloy. The serum aluminium and cobalt levels were measured before, and at one year after surgery. The 15 patients in the ceramic-on-ceramic group had a median pre-operative aluminium level of 1.3 μg/l (0.25 to 8.4) and a cobalt level below the detection limit. At one year the aluminium level was 1.1 μg/l (0.25 to 2.3) and the cobalt level was 0.4 μg/l (0.15 to 0.7). The 13 patients in the metal-on-metal group had a median pre-operative aluminium level of 1.9 μg/l (0.25 to 4.4) and a cobalt level below the detection limit. At one year the median aluminium level was 0.9 μg/l (0.25 to 3.9) whereas the cobalt level was 1.4 μg/l (0.5 to 10.5). This increase in the cobalt level at one year was significant (p <
0.001). Our findings indicate that ceramic-on-ceramic bearings do not cause elevated levels of serum aluminium in the first post-operative year.
We conducted a longitudinal study including patients with the same type of primary hybrid total hip replacement and evaluated patient activity and femoral osteolysis at either five or ten years post-operatively. Activity was measured using the University of California, Los Angeles scale. The primary outcome was the radiological assessment of femoral osteolysis. Secondary outcomes were revision of the femoral component for aseptic loosening and the patients’ quality of life. Of 503 hip replacements in 433 patients with a mean age of 67.7 years (30 to 91), 241 (48%) were seen at five and 262 (52%) at ten years post-operatively. Osteolytic lesions were identified in nine of 166 total hip replacements (5.4%) in patients with low activity, 21 of 279 (7.5%) with moderate activity, and 14 of 58 (24.1%) patients with high activity. The risk of osteolysis increased with participation in a greater number of sporting activities. In multivariate logistic regression adjusting for age, gender, body mass index and the inclination angle of the acetabular component, the adjusted odds ratio for osteolysis comparing high In conclusion, of patients engaged in high activity, 24% had developed femoral osteolysis five to ten years post-operatively.
We performed 52 total hip replacements in 52 patients using a cementless acetabular component combined with a circumferential osteotomy of the medial acetabular wall for the late sequelae of childhood septic arthritis of the hip. The mean age of the patients at operation was 44.5 years (22 to 66) and the mean follow-up was 7.8 years (5 to 11.8). The mean improvement in the Harris Hip Score was 29.6 points (19 to 51) at final follow-up. The mean cover of the acetabular component was 98.5% (87.8% to 100%). The medial acetabular wall was preserved with a mean thickness of 8.3 mm (1.7 to 17.4) and the mean length of abductor lever arm increased from 43.4 mm (19.1 to 62) to 54.2 mm (36.5 to 68.6). One acetabular component was revised for loosening and osteolysis 4.5 years postoperatively, and one had radiolucent lines in all acetabular zones at final review. Kaplan-Meier survival was 94.2% (95% confidence interval 85.8% to 100%) at 7.3 years, with revision or radiological loosening as an end-point when two hips were at risk. A cementless acetabular component combined with circumferential medial acetabular wall osteotomy provides favourable results for acetabular reconstruction in patients who present with late sequelae of childhood septic hip arthritis.
We retrospectively evaluated 42 hips which had undergone acetabular reconstruction using the Kerboull acetabular reinforcement device between September 1994 and December 1998. We used autogenous bone chips from the ilium and ceramic particle morsellised grafts, even in large acetabular bone defects, in the early stages of the study. Thereafter, femoral head allograft was used as bulk graft in patients with large acetabular defects. Ceramic blocks and the patients’ contralateral femoral head were also used as bulk graft. The mean follow-up period was 8.7 years (4.3 to 12). Survivorship analysis was performed using radiological failure of the acetabular component, irrespective of whether it was revised, or not, as the end-point. The survival rate of the morsellised graft group (25 hips) and the bulk graft group (17 hips) at ten years was 53% (95% confidence interval (CI) 42.5% to 63.5%) and 82% (95% CI 72.4% to 91.6%), respectively. The mid-term results of revision total hip replacement with the Kerboull device were better when bulk graft was used in any size of bone defect.
Polyethylene wear of acetabular components is a key factor in the development of periprosthetic osteolysis and wear at the articular surface has been well documented and quantified, but fewer data are available about changes which occur at the backside of the liner. At revision surgery for loosening of the femoral component we retrieved 35 conventional modular acetabular liners of the same design. Linear and volumetric articular wear, backside volumetric change and the volume of the screw-head indentations were quantified. These volumes, clinical data and the results from radiological The rate of backside volumetric change was found to be 2.8% of the rate of volumetric articular wear and decreased with increasing liner size. Migrated acetabular components showed significantly higher rates of backside volumetric change plus screw-head indentations than those without migration. The backside volumetric change was at least ten times larger than finite-element simulation had suggested. In a stable acetabular component with well-anchored screws, the amount of backside wear should not cause clinical problems. Impingement of the screw-heads could produce more wear particles than those generated at the liner-shell interface. Because the rate of backside volumetric change is only 2.8% of the rate of volumetric articular wear and since creep is likely to contribute a significant portion to this, the debris generated by wear at the backside of the liner may not be sufficient to create a strong osteolytic response.
We studied 33 third generation, alumina ceramic-on-ceramic bearings retrieved from cementless total hip replacements after more than six months in situ. Wear volume was measured with a Roundtest machine, and acetabular orientation from the anteroposterior pelvic radiograph. The overall median early wear rate was 0.1 mm3/yr for the femoral heads, and 0.04 mm3/yr for the acetabular liners. We then excluded hips where the components had migrated. In this stable subgroup of 22 bearings, those with an acetabular anteversion of <
15° (seven femoral heads) had a median femoral head wear rate of 1.2 mm3/yr, compared with 0 mm3/yr for those with an anteversion of ≥15° (15 femoral heads, p <
0.001). Even under edge loading, wear volumes with ceramic-on-ceramic bearings are small in comparison to other bearing materials. Low acetabular anteversion is associated with greater wear.
We report the clinical and radiological outcome of 86 revisions of cemented hip arthroplasties using JRI-Furlong hydroxyapatite-ceramic-coated acetabular and femoral components. The acetabular component was revised in 62 hips and the femoral component in all hips. The mean follow-up was 12.6 years and no patient was lost to follow-up. The mean age of the patients was 71.2 years. The mean Harris hip and Oxford scores were 82 (59 to 96) and 23.4 (14 to 40), respectively. The mean Charnley modification of the Merle d’Aubigné and Postel score was 5 (3 to 6) for pain, 4.9 (3 to 6) for movement and 4.4 (3 to 6) for mobility. Migration of the acetabular component was seen in two hips and the mean acetabular inclination was 42.6°. The mean linear polyethylene wear was 0.05 mm/year. The mean subsidence of the femoral component was 1.9 mm and stress shielding was seen in 23 (28%) with bony ingrowth in 76 (94%). Heterotopic ossification was seen in 12 hips (15%). There were three re-revisions, two for deep sepsis and one for recurrent dislocation and there were no re-revisions for aseptic loosening. The mean EuroQol EQ-5D description scores and health thermometer scores were 0.69 (0.51 to 0.89) and 79 (54 to 95), respectively. With an end-point of definite or probable loosening, the probability of survival at 12 years was 93.9% and 95.6% for the acetabular and femoral components, respectively. Overall survival at 12 years, with removal or further revision of either component for any reason as the end-point, was 92.3%. Our study supports the continued use of this arthroplasty and documents the durability of hydroxyapatite-ceramic-coated components.