Advertisement for orthosearch.org.uk
Results 1 - 20 of 1194
Results per page:
Bone & Joint Research
Vol. 10, Issue 2 | Pages 96 - 104
28 Jan 2021
Fang X Zhang L Cai Y Huang Z Li W Zhang C Yang B Lin J Wahl P Zhang W

Aims. Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms. Methods. From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed. Results. A total of 46 patients were enrolled, including 28 patients in the PJI group and 18 patients in the AF group. In the PJI group, 23 cases had positive culture results via T-MH, 22 cases via T-DTT, 20 cases via T-S, 15 cases via T-MM, and 13 cases via T-D. Three cases under ongoing antibiotic treatment remained culture-negative. Five tissue samples provided the optimal yield. Any ongoing antibiotic treatment had a relevant influence on culture sensitivity, except for T-DTT. Conclusion. T-MH had the highest sensitivity. Combining T-MH with T-DTT, which requires no special equipment, may effectively improve bacterial detection in PJI. A total of five periprosthetic tissue biopsies should be sampled in revision arthroplasty for optimal detection of PJI. Cite this article: Bone Joint Res 2021;10(2):96–104


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 53 - 58
1 Jan 2022
Tai DBG Wengenack NL Patel R Berbari EF Abdel MP Tande AJ

Aims. Fungal and mycobacterial periprosthetic joint infections (PJI) are rare events. Clinicians are wary of missing these diagnoses, often leading to the routine ordering of fungal and mycobacterial cultures on periprosthetic specimens. Our goal was to examine the utility of these cultures and explore a modern bacterial culture technique using bacterial blood culture bottles (BCBs) as an alternative. Methods. We performed a retrospective review of patients diagnosed with hip or knee PJI between 1 January 2010 and 31 December 2019, at the Mayo Clinic in Rochester, Minnesota, USA. We included patients aged 18 years or older who had fungal, mycobacterial, or both cultures performed together with bacterial cultures. Cases with positive fungal or mycobacterial cultures were reviewed using the electronic medical record to classify the microbiological findings as representing true infection or not. Results. There were 2,067 episodes of PJI diagnosed within the study period. A total of 3,629 fungal cultures and 2,923 mycobacterial cultures were performed, with at least one of these performed in 56% of episodes (n = 1,157). Test positivity rates of fungal and mycobacterial cultures were 5% (n = 179) and 1.2% (n = 34), respectively. After a comprehensive review, there were 40 true fungal and eight true mycobacterial PJIs. BCB were 90% sensitive in diagnosing true fungal PJI and 100% sensitive in detecting rapidly growing mycobacteria (RGM). Fungal stains were performed in 27 true fungal PJI but were only positive in four episodes (14.8% sensitivity). None of the mycobacterial stains was positive. Conclusion. Routine fungal and mycobacterial stains and cultures should not be performed as they have little clinical utility in the diagnosis of PJI and are associated with significant costs. Candida species and RGM are readily recovered using BCB. More research is needed to predict rare non-Candida fungal and slowly growing mycobacterial PJI that warrant specialized cultures. Cite this article: Bone Joint J 2022;104-B(1):53–58


Bone & Joint Open
Vol. 5, Issue 10 | Pages 832 - 836
4 Oct 2024
Kayani B Mancino F Baawa-Ameyaw J Roussot MA Haddad FS

Aims. The outcomes of patients with unexpected positive cultures (UPCs) during revision total hip arthroplasty (THA) and total knee arthroplasty (TKA) remain unknown. The objectives of this study were to establish the prevalence and infection-free implant survival in UPCs during presumed aseptic single-stage revision THA and TKA at mid-term follow-up. Methods. This study included 297 patients undergoing presumed aseptic single-stage revision THA or TKA at a single treatment centre. All patients with at least three UPCs obtained during revision surgery were treated with minimum three months of oral antibiotics following revision surgery. The prevalence of UPCs and causative microorganisms, the recurrence of periprosthetic joint infections (PJIs), and the infection-free implant survival were established at minimum five years’ follow-up (5.1 to 12.3). Results. Of the 297 patients undergoing aseptic revisions, 37 (12.5%) had at least three UPCs obtained during surgery. The UPC cohort included 23 males (62.2%) and 14 females (37.8%), with a mean age of 71.2 years (47 to 82). Comorbidities included smoking (56.8%), hypertension (48.6%), diabetes mellitus (27.0%), and chronic renal impairment (13.5%). The causative microorganisms included Staphylococcus epidermidis (49.6%), Bacillus species (18.9%), Micrococcus species (16.2%), and Cutibacterium acnes (16.2%). None of the study patients with UPCs developed further PJIs or required further surgical intervention during follow-up. Conclusion. The prevalence of UPCs during presumed aseptic revision THA and TKA was 12.5%. The most common causative microorganisms were of low virulence, and included S. epidermidis, Bacillus species, Micrococcus species, and C. acnes. Microorganism-specific antibiotic treatment for minimum three months’ duration of UPCs in presumed aseptic revision arthroplasty was associated with excellent infection-free implant survival at mid-term follow-up. Cite this article: Bone Jt Open 2024;5(10):832–836


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 39 - 45
1 Jan 2021
Fang X Cai Y Mei J Huang Z Zhang C Yang B Li W Zhang W

Aims. Metagenomic next-generation sequencing (mNGS) is useful in the diagnosis of infectious disease. However, while it is highly sensitive at identifying bacteria, it does not provide information on the sensitivity of the organisms to antibiotics. The purpose of this study was to determine whether the results of mNGS can be used to guide optimization of culture methods to improve the sensitivity of culture from intraoperative samples. Methods. Between July 2014 and October 2019, patients with suspected joint infection (JI) from whom synovial fluid (SF) was obtained preoperatively were enrolled. Preoperative aspirated SF was analyzed by conventional microbial culture and mNGS. In addition to samples taken for conventional microbial culture, some samples were taken for intraoperative culture to optimize the culture method according to the preoperative mNGS results. The demographic characteristics, medical history, laboratory examination, mNGS, and culture results of the patients were recorded, and the possibility of the optimized culture methods improving diagnostic efficiency was evaluated. Results. A total of 56 cases were included in this study. There were 35 cases of JI and 21 cases of non-joint infection (NJI). The sensitivity, specificity, and accuracy of intraoperative microbial culture after optimization of the culture method were 94.29%, 76.19%, and 87.5%, respectively, while those of the conventional microbial culture method were 60%, 80.95%, and 67.86%, respectively. Conclusion. Preoperative aspirated SF detected via mNGS can provide more aetiological information than preoperative culture, which can guide the optimization and improve the sensitivity of intraoperative culture. Cite this article: Bone Joint J 2021;103-B(1):39–45


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 26 - 31
4 Jan 2021
Kildow BJ Ryan SP Danilkowicz R Lazarides AL Penrose C Bolognesi MP Jiranek W Seyler TM

Aims. Use of molecular sequencing methods in periprosthetic joint infection (PJI) diagnosis and organism identification have gained popularity. Next-generation sequencing (NGS) is a potentially powerful tool that is now commercially available. The purpose of this study was to compare the diagnostic accuracy of NGS, polymerase chain reaction (PCR), conventional culture, the Musculoskeletal Infection Society (MSIS) criteria, and the recently proposed criteria by Parvizi et al in the diagnosis of PJI. Methods. In this retrospective study, aspirates or tissue samples were collected in 30 revision and 86 primary arthroplasties for routine diagnostic investigation for PJI and sent to the laboratory for NGS and PCR. Concordance along with statistical differences between diagnostic studies were calculated. Results. Using the MSIS criteria to diagnose PJI as the reference standard, the sensitivity and specificity of NGS were 60.9% and 89.9%, respectively, while culture resulted in sensitivity of 76.9% and specificity of 95.3%. PCR had a low sensitivity of 18.4%. There was no significant difference based on sample collection method (tissue swab or synovial fluid) (p = 0.760). There were 11 samples that were culture-positive and NGS-negative, of which eight met MSIS criteria for diagnosing infection. Conclusion. In our series, NGS did not provide superior sensitivity or specificity results compared to culture. PCR has little utility as a standalone test for PJI diagnosis with a sensitivity of only 18.4%. Currently, several laboratory tests for PJI diagnosis should be obtained along with the overall clinical picture to help guide decision-making for PJI treatment. Cite this article: Bone Joint J 2021;103-B(1):26–31


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with . 99m. Tc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured. Results. We saw a higher uptake (up to 15-fold) of the tracer in the OSM group A compared with the CNTRL group B. Statistical analysis of the results (Student`s t-test) revealed a significantly higher amount of emitted gamma counts in the OSM group (p = 0.048). Qualitative and semi-quantitative analysis by Alizarin Red staining confirmed the presence of extracellular HA deposition in the OSM group. Conclusion. Our data indicate that . 99m. Tc-HDP labelling is a promising tool to track and quantify non-destructive local HA deposition in 3D stem cell cultures. Cite this article: T. L. Grossner, U. Haberkorn, T. Gotterbarm. . 99m. Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res 2019;8:333–341. doi: 10.1302/2046-3758.87.BJR-2017-0248.R1


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 621 - 624
1 May 2019
Pumberger M Bürger J Strube P Akgün D Putzier M

Aims. During revision procedures for aseptic reasons, there remains a suspicion that failure may have been the result of an undetected subclinical infection. However, there is little evidence available in the literature about unexpected positive results in presumed aseptic revision spine surgery. The aims of our study were to estimate the prevalence of unexpected positive culture using sonication and to evaluate clinical characteristics of these patients. Patients and Methods. All patients who underwent a revision surgery after instrumented spinal surgery at our institution between July 2014 and August 2016 with spinal implants submitted for sonication were retrospectively analyzed. Only revisions presumed as aseptic are included in the study. During the study period, 204 spinal revisions were performed for diagnoses other than infection. In 38 cases, sonication cultures were not obtained, leaving a study cohort of 166 cases. The mean age of the cohort was 61.5 years (. sd. 20.4) and there were 104 female patients. Results. Sonication cultures were positive in 75 cases (45.2%). Hardware failure was the most common indication for revision surgery and revealed a positive sonication culture in 26/75 cases (35%) followed by adjacent segment disease (ASD) in 23/75 cases (30%). Cutibacterium acnes and Staphylococcus epidermidis were the most commonly isolated microorganisms, observed in 45% and 31% of cases, respectively. C. acnes was isolated in 65.2% of cases when the indication for revision surgery was ASD. Conclusion. Infection must always be considered as a possibility in the setting of spinal revision surgery, especially in the case of hardware failure, regardless of the lack of clinical signs. Sonication should be routinely used to isolate microorganisms adherent to implants. Cite this article: Bone Joint J 2019;101-B:621–624


Bone & Joint Research
Vol. 7, Issue 1 | Pages 79 - 84
1 Jan 2018
Tsang STJ McHugh MP Guerendiain D Gwynne PJ Boyd J Simpson AHRW Walsh TS Laurenson IF Templeton KE

Objectives. Nasal carriers of Staphylococcus (S.) aureus (MRSA and MSSA) have an increased risk for healthcare-associated infections. There are currently limited national screening policies for the detection of S. aureus despite the World Health Organization’s recommendations. This study aimed to evaluate the diagnostic performance of molecular and culture techniques in S. aureus screening, determine the cause of any discrepancy between the diagnostic techniques, and model the potential effect of different diagnostic techniques on S. aureus detection in orthopaedic patients. Methods. Paired nasal swabs for polymerase chain reaction (PCR) assay and culture of S. aureus were collected from a study population of 273 orthopaedic outpatients due to undergo joint arthroplasty surgery. Results. The prevalence of MSSA nasal colonization was found to be between 22.4% to 35.6%. The current standard direct culturing methods for detecting S. aureus significantly underestimated the prevalence (p = 0.005), failing to identify its presence in approximately one-third of patients undergoing joint arthroplasty surgery. Conclusion. Modelling these results to national surveillance data, it was estimated that approximately 5000 to 8000 S. aureus surgical site infections could be prevented, and approximately $140 million to $950 million (approximately £110 million to £760 million) saved in treatment costs annually in the United States and United Kingdom combined, by using alternative diagnostic methods to direct culture in preoperative S. aureus screening and eradication programmes. Cite this article: S. T. J. Tsang, M. P. McHugh, D. Guerendiain, P. J. Gwynne, J. Boyd, A. H. R. W. Simpson, T. S. Walsh, I. F. Laurenson, K. E. Templeton. Underestimation of Staphylococcus aureus (MRSA and MSSA) carriage associated with standard culturing techniques: One third of carriers missed. Bone Joint Res 2018;7:79–84. DOI: 10.1302/2046-3758.71.BJR-2017-0175.R1


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1490 - 1495
1 Nov 2017
Akgün D Müller M Perka C Winkler T

Aims. The aim of this study was to identify the incidence of positive cultures during the second stage of a two-stage revision arthroplasty and to analyse the association between positive cultures and an infection-free outcome. Patients and Methods. This single-centre retrospective review of prospectively collected data included patients with a periprosthetic joint infection (PJI) of either the hip or the knee between 2013 and 2015, who were treated using a standardised diagnostic and therapeutic algorithm with two-stage exchange. Failure of treatment was assessed according to a definition determined by a Delphi-based consensus. Logistic regression analysis was performed to assess the predictors of positive culture and risk factors for failure. The mean follow-up was 33 months (24 to 48). Results. A total of 163 two-stage revision arthroplasties involving 84 total hip arthroplasties (THAs) and 79 total knee arthroplasties (TKAs) were reviewed. In 27 patients (16.6%), ≥ 1 positive culture was identified at re-implantation and eight (29.6%) of these subsequently failed compared with 20 (14.7%) patients who were culture-negative. The same initially infecting organism was isolated at re-implantation in nine of 27 patients (33.3%). The organism causing re-infection in none of the patients was the same as that isolated at re-implantation. The risk of the failure of treatment was significantly higher in patients with a positive culture (odds ratio (OR) 1.7; 95% confidence interval (CI) 1.0 to 3.0; p = 0.049) and in patients with a higher Charlson Comorbidity Index (OR 1.5; 95% CI 1.6 to 1.8; p = 0.001). Conclusion. Positive culture at re-implantation was independently associated with subsequent failure. Surgeons need to be aware of this association and should consider the medical optimisation of patients with severe comorbidities both before and during treatment. Cite this article: Bone Joint J 2017;99-B:1490–5


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1225 - 1228
1 Sep 2007
van de Pol GJ Sturm PDJ van Loon CJ Verhagen C Schreurs BW

Allografts of bone from the femoral head are often used in orthopaedic procedures. Although the donated heads are thoroughly tested microscopically before release by the bone bank, some surgeons take additional cultures in the operating theatre before implantation. There is no consensus about the need to take these cultures. We retrospectively assessed the clinical significance of the implantation of positive-cultured bone allografts. The contamination rate at retrieval of the allografts was 6.4% in our bone bank. Intra-operative cultures were taken from 426 femoral head allografts before implantation; 48 (11.3%) had a positive culture. The most frequently encountered micro-organism was coagulase-negative staphylococcus. Deep infection occurred in two of the 48 patients (4.2%). In only one was it likely that the same micro-organism caused the contamination and the subsequent infection. In our study, the rate of infection in patients receiving positive-cultured allografts at implantation was not higher than the overall rate of infection in allograft surgery suggesting that the positive cultures at implantation probably represent contamination and that the taking of additional cultures is not useful


Bone & Joint Research
Vol. 7, Issue 3 | Pages 205 - 212
1 Mar 2018
Lin Y Hall AC Simpson AHRW

Objectives. The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage. Methods. The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively. Results. Chondrocyte viability in the static model decreased significantly from 89.9% (. sd. 2.5%) (Day 0) to 66.5% (. sd. 13.1%) (Day 28), 94.7% (. sd. 1.1%) to 80. 9% (. sd. 5.8%) and 80.1% (. sd. 3.0%) to 46.9% (. sd. 8.5%) in the superficial quarter, central half and deep quarter of cartilage, respectively (p < 0.001 in each zone; one-way analysis of variance). The GAG content decreased significantly from 6.01 μg/mg (. sd. 0.06) (Day 0) to 4.71 μg/mg (. sd. 0.06) (Day 28) (p < 0.001; one-way analysis of variance). However, with dynamic movement, chondrocyte viability and GAG content were maintained at the Day 0 level over the four-week period without a significant change (chondrocyte viability: 92.0% (. sd. 4.0%) (Day 0) to 89.9% (. sd. 0.2%) (Day 28), 93.1% (. sd. 1.5%) to 93.8% (. sd. 0.9%) and 85.6% (. sd. 0.8%) to 84.0% (. sd. 2.9%) in the three corresponding zones; GAG content: 6.18 μg/mg (. sd. 0.15) (Day 0) to 6.06 μg/mg (. sd. 0.09) (Day 28)). Conclusion. Dynamic joint movement maintained chondrocyte viability and cartilage GAG content. This long-term whole joint culture model could be of value in providing a more natural and controlled platform for investigating the influence of joint movement on articular cartilage, and for evaluating novel therapies for cartilage repair. Cite this article: Y-C. Lin, A. C. Hall, A. H. R. W. Simpson. A novel organ culture model of a joint for the evaluation of static and dynamic load on articular cartilage. Bone Joint Res 2018;7:205–212. DOI: 10.1302/2046-3758.73.BJR-2017-0320


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 413 - 415
1 Apr 2022
Hamilton LC Haddad FS


Objectives. Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect. Methods. Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay. Results. The relative quantification (condition/control) of WST-1 assay on day seven revealed a significant decrease in tenocyte proliferation in small-diameter culture wells (96 and 24 wells) due to the gelling effect. PRFM in large-diameter culture wells (12 and six wells) and co-culture systems induced a significant increase in tenocyte proliferation compared with the control group. The gelling effect of PRFM was avoided by the co-culture device. Conclusion. When PRFM and tenocytes are cultured in small-diameter culture wells, the gelling effect will occur and make screening of personalized best-fit PRFM difficult. This effect can be avoided with the co-culture device. Cite this article: C-H. Chiu, P. Chen, W-L. Yeh, A. C-Y. Chen, Y-S. Chan, K-Y. Hsu, K-F. Lei. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Joint Res 2019;8:216–223. DOI: 10.1302/2046-3758.85.BJR-2018-0258.R1


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives. Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods. Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results. HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion. HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1566 - 1570
1 Nov 2014
Blackmur JP Tang EYH Dave J Simpson AHRW

We compared the use of broth culture medium for samples taken in theatre with the standard practice of placing tissue samples in universal containers. A total of 67 consecutive patients had standard multiple samples of deep tissue harvested at surgery and distributed equally in theatre either to standard universal containers or to broth culture medium. These samples were cultured by direct and enrichment methods. The addition of broth in theatre to standard practice led to an increase in sensitivity from 83% to 95% and an increase in negative predictive value from 77% to 91%. Placing tissue samples directly into broth in the operating theatre is a simple, inexpensive way to increase the sensitivity of cultures from infected patients, and does not appear to compromise the specificity of these cultures. Cite this article: Bone Joint J 2014;96-B:1566–70


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 797 - 800
1 Aug 2004
James LA Ibrahim T Esler CN

We determined the rate of contamination of donated femoral heads at primary hip arthroplasty within a single region between July 1992 and July 2001. We established the null hypothesis that culture results played no role in predicting early failure of the joint because of infection. The rate of contamination was 9%. A positive culture, at the time of retrieval, was found in 367 of 4045 femoral heads. Coagulase-negative staphylococcus was isolated in 77% of the positive cases. At a minimum follow-up of one year, there was no statistically significant difference in the rate of complications or of revision of age-matched patients whose femoral heads had a positive culture compared with those whose femoral heads were sterile. Our findings confirm that culture of the femoral head plays no part in determining future failure of joint replacement in the donor


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 544 - 553
1 Apr 2006
Akmal M Anand A Anand B Wiseman M Goodship AE Bentley G

Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 427 - 431
1 Mar 2015
Wu C Hsieh P Fan Jiang J Shih H Chen C Hu C

Fresh-frozen allograft bone is frequently used in orthopaedic surgery. We investigated the incidence of allograft-related infection and analysed the outcomes of recipients of bacterial culture-positive allografts from our single-institute bone bank during bone transplantation. The fresh-frozen allografts were harvested in a strict sterile environment during total joint arthroplasty surgery and immediately stored in a freezer at -78º to -68º C after packing. Between January 2007 and December 2012, 2024 patients received 2083 allografts with a minimum of 12 months of follow-up. The overall allograft-associated infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts taken before implantation revealed 21 (1.0%) positive findings. The 21 recipients were given various antibiotics at the individual orthopaedic surgeon’s discretion. At the latest follow-up, none of these 21 recipients displayed clinical signs of infection following treatment. Based on these findings, we conclude that an incidental positive culture finding for allografts does not correlate with subsequent surgical site infection. Additional prolonged post-operative antibiotic therapy may not be necessary for recipients of fresh-frozen bone allograft with positive culture findings. Cite this article: Bone Joint J 2015;97-B:427–31


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 286 - 295
1 Mar 2004
Marlovits S Hombauer M Truppe M Vècsei V Schlegel W

We compared the changes in the ratio of type-I and type-II collagen in monolayer cultures of human articular chondrocytes (HAC). HAC were isolated from samples of cartilage from normal joints and cultivated in monolayer for up to 46 days. Expression of collagen type-I and type-II was determined by immunocytochemistry, Western blotting, and the nested reverse transcription polymerase chain reaction (RT-PCR), and quantified by real-time PCR. The transition from a spherical morphology to the flattened morphology of an anchorage-dependent culture was accompanied by a rapid change in the collagen phenotype with the replacement of collagen type II by collagen type I. This was confirmed by immunocytochemistry and Western blotting between days 21 and 28. Using techniques for the analysis of gene transcription (nested RT-PCR and real-time PCR), a complete switch of collagen gene expression was not observed. Expression of collagen type I increased 100-fold during the culture time. That of collagen type II was found during the entire period and decreased more than 100-fold. The main finding was that expression of the genes encoding collagen type I and II was highly time-dependent and the ratio of collagen type II to I (CII/CI), defined as an index of cell differentiation, was significantly higher (215- to 480-fold) at the beginning of the culture. At the end of the experimental culture time, ratios between 0.1 and 1 were reached


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 912 - 915
1 Aug 2001
Salai M Segal E Cohen I Dudkiewicz I Farzame N Pitaru S Savion N

Colchicine is often used in the treatment of diseases such as familial Mediterranean fever (FMF) and gout. We have previously reported that patients with FMF who had colchicine on a daily basis and who had a total hip arthroplasty showed no heterotopic ossification after surgery. The mechanism by which colchicine causes this clinical phenomenon has never been elucidated. We therefore evaluated the effect of various concentrations of colchicine on cell proliferation and mineralisation in tissue culture, using rat and human cells with and without osteogenic potential. Cell proliferation was assessed by direct cell counts and uptake of (. 3. H)thymidine, and mineralisation by measuring the amount of staining by Alizarin Red. Our findings indicate that concentrations of colchicine of up to 3 ng/ml did not affect cell proliferation but inhibition was observed at 10 to 30 ng/ml. Mineralisation decreased to almost 50%, which was the maximum inhibition observed, at concentrations of colchicine of 2.5 ng/ml. These results indicate that colchicine at low concentrations, of up to 3 ng/ml, has the capacity to inhibit selectively bone-like cell mineralisation in culture, without affecting cell proliferation. Further clinical and laboratory studies are necessary to evaluate the effects of colchicine on biological processes involving the proliferation of osteoblasts and tissue mineralisation in vivo, such as the healing of fractures, the formation of heterotopic bone and neoplastic bone growth