Advertisement for orthosearch.org.uk
Results 1 - 20 of 218
Results per page:
Bone & Joint Research
Vol. 11, Issue 3 | Pages 143 - 151
1 Mar 2022
Goetz J Keyssner V Hanses F Greimel F Leiß F Schwarz T Springorum H Grifka J Schaumburger J

Aims. Periprosthetic joint infections (PJIs) are rare, but represent a great burden for the patient. In addition, the incidence of methicillin-resistant Staphylococcus aureus (MRSA) is increasing. The aim of this rat experiment was therefore to compare the antibiotics commonly used in the treatment of PJIs caused by MRSA. Methods. For this purpose, sterilized steel implants were implanted into the femur of 77 rats. The metal devices were inoculated with suspensions of two different MRSA strains. The animals were divided into groups and treated with vancomycin, linezolid, cotrimoxazole, or rifampin as monotherapy, or with combination of antibiotics over a period of 14 days. After a two-day antibiotic-free interval, the implant was explanted, and bone, muscle, and periarticular tissue were microbiologically analyzed. Results. Vancomycin and linezolid were able to significantly (p < 0.05) reduce the MRSA bacterial count at implants. No significant effect was found at the bone. Rifampin was the only monotherapy that significantly reduced the bacterial count on implant and bone. The combination with vancomycin or linezolid showed significant efficacy. Treatment with cotrimoxazole alone did not achieve a significant bacterial count reduction. The combination of linezolid plus rifampin was significantly more effective on implant and bone than the control group in both trials. Conclusion. Although rifampicin is effective as a monotherapy, it should not be used because of the high rate of resistance development. Our animal experiments showed the great importance of combination antibiotic therapies. In the future, investigations with higher case numbers, varied bacterial concentrations, and changes in individual drug dosages will be necessary to be able to draw an exact comparison, possibly within a clinical trial. Cite this article: Bone Joint Res 2022;11(3):143–151


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 225 - 228
1 Feb 2009
Shukla S Nixon M Acharya M Korim MT Pandey R

We examined the incidence of infection with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to the Leicester Royal Infirmary Trauma Unit between January 2004 and June 2006. The influence of MRSA status at the time of their admission was examined, together with age, gender and diagnosis, using multi-variant analysis. Of 2473 patients, 79 (3.2%) were MRSA carriers at the time of admission and 2394 (96.8%) were MRSA-negative. Those carrying MRSA at the time of admission were more likely to develop surgical site infection with MRSA (7 of 79 patients, 8.8%) than non-MRSA carriers (54 of 2394 patients, 2.2%, p < 0.001). Further analysis showed that hip fracture and increasing age were also risk factors with a linear increase in relative risk of 1.8% per year. MRSA carriage at admission, age and the pathology are all associated with an increased rate of developing MRSA wound infection. Identification of such risk factors at admission helps to target health-care resources, such the use of glycopeptide antibiotics at induction and the ‘building-in’ of increased vigilance for wound infection pre-operatively


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 548 - 551
1 Apr 2011
Murphy E Spencer SJ Young D Jones B Blyth MJG

The objective of this study was to determine the effectiveness of screening and successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) colonisation in elective orthopaedic patients on the subsequent risk of developing a surgical site infection (SSI) with MRSA. We screened 5933 elective orthopaedic in-patients for MRSA at pre-operative assessment. Of these, 108 (1.8%) were colonised with MRSA and 90 subsequently underwent surgery. Despite effective eradication therapy, six of these (6.7%) had an SSI within one year of surgery. Among these infections, deep sepsis occurred in four cases (4.4%) and superficial infection in two (2.2%). The responsible organism in four of the six cases was MRSA. Further analysis showed that patients undergoing surgery for joint replacement of the lower limb were at significantly increased risk of an SSI if previously colonised with MRSA. We conclude that previously MRSA-colonised patients undergoing elective surgery are at an increased risk of an SSI compared with other elective patients, and that this risk is significant for those undergoing joint replacement of the lower limb. Furthermore, when an infection occurs, it is likely to be due to MRSA


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 170 - 177
4 Jan 2021
Craxford S Marson BA Oderuth E Nightingale J Agrawal Y Ollivere B

Aims. Infection after surgery increases treatment costs and is associated with increased mortality. Hip fracture patients have historically had high rates of methicillin-resistant Staphylococcus aureus (MRSA) colonization and surgical site infection (SSI). This paper reports the impact of routine MRSA screening and the “cleanyourhands” campaign on rates of MRSA SSI and patient outcome. Methods. A total of 13,503 patients who presented with a hip fracture over 17 years formed the study population. Multivariable logistic regression was performed to determine risk factors for MRSA and SSI. Autoregressive integrated moving average (ARIMA) modelling adjusted for temporal trends in rates of MRSA. Kaplan-Meier estimators were generated to assess for changes in mortality. Results. In all, 6,189 patients were identified before the introduction of screening and 7,314 in the post-screening cohort. MRSA infection fell from 69 cases to 15 in the post-screening cohort (p < 0.001). The ARIMA confirmed a significant reduction in MRSA SSI post-screening (p = 0.043) but no significant impact after hand hygiene alone (p = 0.121). Overall SSI fell (2.4% to 1.5%), however deep infection increased slightly (0.89% to 1.06%). ARIMA showed neither intervention affected overall SSI (“cleanyourhands” -0.172% (95% confidence interval (CI) -0.39% to 0.21); p = 0.122, screening -0.113% per year, (95% CI -0.34 to 0.12); p = 0.373). One-year mortality after deep SSI was unchanged after screening (50% vs 45%; p = 0.415). Only warfarinization (OR 3.616 (95% CI 1.366 to 9.569); p = 0.010) and screening (OR 0.189 (95% CI 0.086 to 0.414); p < 0.001) were significant covariables for developing MRSA SSI. Conclusion. While screening and decolonization may reduce MRSA-associated SSI, the benefit to patient outcome remains unclear. Overall deep SSI remains an unsolved problem that has seen little improvement over time. Preventing other hospital-associated infections should not be forgotten in the fight against MRSA. Cite this article: Bone Joint J 2021;103-B(1):170–177


Bone & Joint Research
Vol. 9, Issue 2 | Pages 49 - 59
1 Feb 2020
Yu K Song L Kang HP Kwon H Back J Lee FY

Aims. To characterize the intracellular penetration of osteoblasts and osteoclasts by methicillin-resistant Staphylococcus aureus (MRSA) and the antibiotic and detergent susceptibility of MRSA in bone. Methods. Time-lapse confocal microscopy was used to analyze the interaction of MRSA strain USA300 with primary murine osteoblasts and osteoclasts. The effects of early and delayed antibiotic treatments on intracellular and extracellular bacterial colony formation and cell death were quantified. We tested the effects of cefazolin, gentamicin, vancomycin, tetracycline, rifampicin, and ampicillin, as well as agents used in surgical preparation and irrigation. Results. MRSA infiltrated bone-resident cells within 15 to 30 minutes. Penetration was most effectively prevented with early (i.e. 30 minutes) antibiotic administration. The combined administration of rifampicin with other antibiotics potentiated their protective effects against MRSA-induced cytotoxicity and most significantly reduced extracellular bacterial bioburden. Gentamicin-containing compounds were most effective in reducing intracellular MRSA bioburden. Of the surgical preparation agents evaluated, betadine reduced in vitro MRSA growth to the greatest extent. Conclusion. The standard of care for open fractures involves debridement and antibiotics within the first six hours of injury but does not account for the window in which bacteria penetrate cells. Antibiotics must be administered as early as possible after injury or prior to incision to prevent intracellular infestation. Rifampicin can potentiate the capacity of antibiotic regimens to reduce MRSA-induced cytotoxicity. Cite this article:Bone Joint Res. 2020;9(2):49–59


Bone & Joint Research
Vol. 9, Issue 5 | Pages 211 - 218
1 May 2020
Hashimoto A Miyamoto H Kobatake T Nakashima T Shobuike T Ueno M Murakami T Noda I Sonohata M Mawatari M

Aims. Biofilm formation is intrinsic to prosthetic joint infection (PJI). In the current study, we evaluated the effects of silver-containing hydroxyapatite (Ag-HA) coating and vancomycin (VCM) on methicillin-resistant Staphylococcus aureus (MRSA) biofilm formation. Methods. Pure titanium discs (Ti discs), Ti discs coated with HA (HA discs), and 3% Ag-HA discs developed using a thermal spraying were inoculated with MRSA suspensions containing a mean in vitro 4.3 (SD 0.8) x 10. 6. or 43.0 (SD 8.4) x 10. 5. colony-forming units (CFUs). Immediately after MRSA inoculation, sterile phosphate-buffered saline or VCM (20 µg/ml) was added, and the discs were incubated for 24 hours at 37°C. Viable cell counting, 3D confocal laser scanning microscopy with Airyscan, and scanning electron microscopy were then performed. HA discs and Ag HA discs were implanted subcutaneously in vivo in the dorsum of rats, and MRSA suspensions containing a mean in vivo 7.2 (SD 0.4) x 10. 6.   or 72.0 (SD 4.2) x 10. 5.   CFUs were inoculated on the discs. VCM was injected subcutaneously daily every 12 hours followed by viable cell counting. Results. Biofilms that formed on HA discs were thicker and larger than those on Ti discs, whereas those on Ag-HA discs were thinner and smaller than those on Ti discs. Viable bacterial counts in vivo revealed that Ag-HA combined with VCM was the most effective treatment. Conclusion. Ag-HA with VCM has a potential synergistic effect in reducing MRSA biofilm formation and can thus be useful for preventing and treating PJI. Cite this article:Bone Joint Res. 2020;9(5):211–218


Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives. Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin. Methods. Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test. Results. The vancomycin group had significantly larger inhibition zones than the fosfomycin group from day three through to completion of the fourth week of incubation (p < 0.001). The vancomycin group exhibited a MRSA inhibition zone up to four weeks but the fosfomycin group showed an inhibition zone for only three days and after that did not show the the potential to inhibit MRSA. Conclusion. This in vitro study found that the inhibitory effect of vancomycin-impregnated articulating cement spacers against MRSA outperformed fosfomycin-impregnated articulating cement spacers. Further comparing our results to other published reports suggests there might be a limitation of the disc diffusion bioassay to show a large inhibitory zone in a high concentration of a highly soluble antibiotic. Cite this article: V. Yuenyongviwat, N. Ingviya, P. Pathaburee, B. Tangtrakulwanich. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Joint Res 2017;6:132–136. DOI: 10.1302/2046-3758.63.2000639


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 565 - 566
1 May 2007
Simpson AHRW Dave J Cookson B


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 4 - 9
1 Jan 2013
Goyal N Miller A Tripathi M Parvizi J

Staphylococcus aureus is one of the leading causes of surgical site infection (SSI). Over the past decade there has been an increase in methicillin-resistant S. aureus (MRSA). This is a subpopulation of the bacterium with unique resistance and virulence characteristics. Nasal colonisation with either S. aureus or MRSA has been demonstrated to be an important independent risk factor associated with the increasing incidence and severity of SSI after orthopaedic surgery. Furthermore, there is an economic burden related to SSI following orthopaedic surgery, with MRSA-associated SSI leading to longer hospital stays and increased hospital costs. Although there is some controversy about the effectiveness of screening and eradication programmes, the literature suggests that patients should be screened and MRSA-positive patients treated before surgical admission in order to reduce the risk of SSI. Cite this article: Bone Joint J 2013;95-B:4–9


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 60 - 65
1 Nov 2014
Parry MC Duncan CP

Advances in the treatment of periprosthetic joint infections of the hip have once more pushed prosthesis preserving techniques into the limelight. At the same time, the common infecting organisms are evolving to become more resistant to conventional antimicrobial agents. Whilst the epidemiology of resistant staphylococci is changing, a number of recent reports have advocated the use of irrigation and debridement and one-stage revision for the treatment of periprosthetic joint infections due to resistant organisms. This review presents the available evidence for the treatment of periprosthetic joint infections of the hip, concentrating in particular on methicillin resistant staphylococci.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):60–5.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 31 - 36
1 Jan 2016
Whiteside LA Roy ME Nayfeh TA

Bactericidal levels of antibiotics are difficult to achieve in infected total joint arthroplasty when intravenous antibiotics or antibiotic-loaded cement spacers are used, but intra-articular (IA) delivery of antibiotics has been effective in several studies. This paper describes a protocol for IA delivery of antibiotics in infected knee arthroplasty, and summarises the results of a pharmacokinetic study and two clinical follow-up studies of especially difficult groups: methicillin-resistant Staphylococcus aureus and failed two-stage revision. In the pharmacokinetic study, the mean synovial vancomycin peak level was 9242 (3956 to 32 150; sd 7608 μg/mL) among the 11 patients studied. Serum trough level ranged from 4.2 to 25.2 μg/mL (mean, 12.3 μg/mL; average of 9.6% of the joint trough value), which exceeded minimal inhibitory concentration. The success rate exceeded 95% in the two clinical groups. IA delivery of antibiotics is shown to be safe and effective, and is now the first option for treatment of infected total joint arthroplasty in our institution.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):31–6.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 821 - 824
1 Jun 2012
Fushimi K Miyamoto K Fukuta S Hosoe H Masuda T Shimizu K

There have been few reports regarding the efficacy of posterior instrumentation alone as surgical treatment for patients with pyogenic spondylitis, thus avoiding the morbidity of anterior surgery. We report the clinical outcomes of six patients with pyogenic spondylitis treated effectively with a single-stage posterior fusion without anterior debridement at a mean follow-up of 2.8 years (2 to 5). Haematological data, including white cell count and level of C-reactive protein, returned to normal in all patients at a mean of 8.2 weeks (7 to 9) after the posterior fusion. Rigid bony fusion between the infected vertebrae was observed in five patients at a mean of 6.3 months (4.5 to 8) post-operatively, with the remaining patient having partial union. Severe back pain was immediately reduced following surgery and the activities of daily living showed a marked improvement. Methicillin-resistant Staphylococcus aureus was detected as the causative organism in four patients.

Single-stage posterior fusion may be effective in patients with pyogenic spondylitis who have relatively minor bony destruction.


Aims. This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs). Methods. A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology. Results. The Vm-MBs and Mp-MBs met the experimental requirements. The biofilm biomass in the Vm, Vm-MBs, UTMD, and Vm-MBs + UTMD groups was significantly lower than in the control group. MRSA and E. coli biofilms were most notably damaged in the Vm-MBs + UTMD group and Mp-MBs + UTMD group, respectively, with mean 21.55% (SD 0.08) and 19.73% (SD 1.25) remaining in the biofilm biomass. Vm-MBs + UTMD significantly reduced biofilm thickness and bacterial viability (p = 0.005 and p < 0.0001, respectively). Mp-MBs + UTMD could significantly decrease biofilm thickness and bacterial viability (allp < 0.001). Plate-counting method showed that the numbers of MRSA and E. coli bacterial colonies were significantly lower in the Vm-MBs + UTMD group and the Mp, Mp-MBs, UTMD, Mp-MBs + UTMD groups compared to the control group (p = 0.031). SEM showed that the morphology and structure of MRSA and E. coli were significantly damaged in the Vm-MBs + UTMD and Mp-MBs + UTMD groups. Conclusion. Vm-MBs or Mp-MBs combined with UTMD can effectively disrupt biofilms and protectively release antibiotics under ultrasound mediation, significantly reducing bacterial viability and improving the bactericidal effect of antibiotics. Cite this article: Bone Joint Res 2024;13(9):441–451


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups. Methods. A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm. 3. cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate. Results. For MSSA and MRSA, no inhibitory effect was found in the control group, and antibiotic-loaded smooth titanium alloy beads showed a short inhibitory effect until day 2. For MSSA, both tantalum and 3D porous titanium beads showed significantly larger mean ZOIs than cement beads (all p < 0.01) each day until day 7 for tantalum and until day 3 for 3D porous titanium. After six days, antibiotic-loaded cement had significantly larger mean ZOIs than the 3D porous titanium (p = 0.027), but no significant difference was found with tantalum (p = 0.082). For MRSA, both tantalum and 3D porous titanium beads had significantly larger mean ZOIs than antibiotic-loaded cement each day until day 6 for tantalum (all p < 0.01) and until day 3 for 3D porous titanium (all p < 0.04). Antibiotic-loaded cement had significantly larger mean ZOIs than tantalum and 3D porous titanium from day 7 to 9 (all p < 0.042). Conclusion. These results show that porous metal implants can deliver local antibiotics over slightly varying time frames based on in vitro analysis. Cite this article: Bone Joint J 2020;102-B(6 Supple A):158–162


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 812 - 817
1 Jun 2006
Nixon M Jackson B Varghese P Jenkins D Taylor G

We examined the rates of infection and colonisation by methicillin-resistant Staphylococcus aureus (MRSA) between January 2003 and May 2004 in order to assess the impact of the introduction of an MRSA policy in October 2003, which required all admissions to be screened. Emergency admissions were treated prophylactically and elective beds ring-fenced. A total of 5594 admissions were cross-referenced with 22 810 microbiology results. The morbidity, mortality and cost of managing MRSA-carrying patients, with a proximal fracture of the femur were compared, in relation to age, gender, American Society of Anaesthesiologists grade and residential status, with a group of matched controls who were MRSA-negative. In 2004, we screened 1795 of 1796 elective admissions and MRSA was found in 23 (1.3%). We also screened 1122 of 1447 trauma admissions and 43 (3.8%) were carrying MRSA. All ten ward transfers were screened and four (40%) were carriers (all p < 0.001). The incidence of MRSA in trauma patients increased by 2.6% per week of inpatient stay (r = 0.97, p < 0.001). MRSA developed in 2.9% of trauma and 0.2% of elective patients during that admission (p < 0.001). The implementation of the MRSA policy reduced the incidence of MRSA infection by 56% in trauma patients (1.57% in 2003 (17 of 1084) to 0.69% in 2004 (10 of 1447), p = 0.035). Infection with MRSA in elective patients was reduced by 70% (0.56% in 2003 (7 of 1257) to 0.17% in 2004 (3 of 1806), p = 0.06). The cost of preventing one MRSA infection was £3200. Although colonisation by MRSA did not affect the mortality rate, infection by MRSA more than doubled it. Patients with proximal fractures of the femur infected with MRSA remained in hospital for 50 extra days, had 19 more days of vancomycin treatment and 26 more days of vacuum-assisted closure therapy than the matched controls. These additional costs equated to £13 972 per patient. From this experience we have been able to describe the epidemiology of MRSA, assess the impact of infection-control measures on MRSA infection rates and determine the morbidity, mortality and economic cost of MRSA carriage on trauma and elective orthopaedic wards


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1401 - 1406
1 Nov 2008
Patel A Calfee RP Plante M Fischer SA Arcand N Born C

Methicillin-resistant Staphylococcus aureus (MRSA) has become a ubiquitous bacterium in both the hospital and community setting. There are two major subclassifications of MRSA, community-acquired and healthcare-acquired, each with differing pathogenicity and management. MRSA is increasingly responsible for infections in otherwise healthy, active adults. Local outbreaks affect both professional and amateur athletes and there is increasing public awareness of the issue. Health-acquired MRSA has major cost and outcome implications for patients and hospitals. The increasing prevalence and severity of MRSA means that the orthopaedic community should have a basic knowledge of the bacterium, its presentation and options for treatment. This paper examines the evolution of MRSA, analyses the spectrum of diseases produced by this bacterium and presents current prevention and treatment strategies for orthopaedic infections from MRSA


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 807 - 811
1 Jun 2006
Roche SJ Fitzgerald D O’Rourke A McCabe JP

This prospective five-year study analyses the impact of methicillin-resistant Staphylococcus aureus (MRSA) on an Irish orthopaedic unit. We identified 318 cases of MRSA, representing 0.76% of all admissions (41 971). A total of 240 (76%) cases were colonised with MRSA, while 120 (37.7%) were infected. Patients were admitted from home (218; 68.6%), nursing homes (72; 22.6%) and other hospitals (28; 8.8%). A total of 115 cases (36.6%) were colonised or infected on admission. Many patients were both colonised and infected at some stage. The length of hospital stay was almost trebled because of the presence of MRSA infection. Encouragingly, overall infection rates have not risen significantly over the five years of the study despite increased prevalence of MRSA. However, the financial burden of MRSA is increasing, highlighting the need for progress in understanding how to control this resistant pathogen more effectively


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 908 - 915
1 May 2021
O’Donnell JA Wu M Cochrane NH Belay E Myntti MF James GA Ryan SP Seyler TM

Aims. Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm. Methods. We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model. Results. With regard to irrigant efficacy against biofilms, Povidone-iodine treatment resulted in greater reductions in nascent MRSA biofilms (logarithmic reduction (LR) = 3.12; p < 0.001) compared to other solutions. Bactisure treatment had the greatest reduction of mature Pseudomonas aeruginosa biofilms (LR = 1.94; p = 0.032) and a larger reduction than Vashe or Irrisept for mature Staphylococcus epidermidis biofilms (LR = 2.12; p = 0.025). Pooled data for all biofilms tested resulted in Bactisure and Povidone-iodine with significantly greater reductions compared to Vashe, Prontosan, and Irrisept solutions (p < 0.001). Conclusion. Treatment failure in PJI is often due to failure to clear the biofilm; antiseptics are often used as an adjunct to biofilm clearance. We tested irrigants against clinically relevant microorganisms in biofilm in vitro and showed significant differences in efficacy among the different solutions. Further clinical outcome data is necessary to determine whether these solutions can impact PJI outcome in vivo. Cite this article: Bone Joint J 2021;103-B(5):908–915