Background. Resveratrol is a polyphenolic compound commonly found in the
skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated
by resveratrol and has been shown to promote longevity and boost
mitochondrial
Aims. This meta-analysis and systematic review aimed to comprehensively investigate the effects of vitamin K supplementation on bone mineral density (BMD) at various sites and bone
Aims. Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. Methods. The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. Results. The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. Conclusion. Intracellular S. aureus infection impaired osteoblast
The scoliosis observed in chickens after pinealectomy resembles that seen in humans with an adolescent idiopathic scoliosis, suggesting that melatonin deficiency may be responsible. However, to date there have been no studies of pineal gland glucose
We have undertaken an in vivo assessment of the tissue
We describe a model which can be used for in vitro biocompatibility assays of biomaterials. We studied the in vitro response of human osteoarthritis or rheumatoid arthritis fibroblast-like synoviocytes to Al. 2. O. 3. or ZrO. 2. particles by analyzing the production of interleukin-1 (IL-1) and interleukin-6 (IL-6) and the
After the simultaneous administration of radiocalcium and radiophosphorus to young rats the rate of deposition of calcium and of phosphorus in various skeletal parts was computed. Agreement was found between the two sets of data. No difference was thus found in the
We measured the adenosine triphosphate (ATP) content of callus at various intervals during healing in 78 fractured tibiae in 10- to 12-week-old rabbits. The results, compared with the level in normal tissues, showed a high rate of energy
1. The uptake of S35 labelled sodium sulphate has been studied autoradiographically in the intervertebral disc of the young rabbit. 2. The sojourn of the isotope in the tissues includes an intracellular phase of approximately twenty-four hours, followed by an extracellular phase. 3. The cells exhibiting by far the greatest affinity for the sulphate ion are the peripheral groups of cells of the nucleus pulposus, while the chondrocyte-like cells of the cartilaginous segment of the annulus fibrosus are also fairly active. The central cells of the nucleus and the fibroblasts of the outer one-third of the annulus have a much lower uptake. 4. By analogy with similar studies on hyaline cartilage, and on the basis of correlation between the alcinophilia of the tissues and the concentration of the label, both before and after hyalase digestion of the tissue, it is considered that in the young rabbit disc, as in articular cartilage, the sulphate is incorporated primarily into chondroitin sulphate. 5. The elimination of the isotope from the nucleus at twenty-four days and the persistence of the label in the annulus fibrosus at thirty-two days tends to suggest that the metabolic turnover of acid mucopolysaccharide is considerably slower in the annulus than in the nucleus.
1. Methods for culturing cells isolated from slices of arthritic human or normal mammalian cancellous bone are described. 2. The capacity of the cultured cells to take up and hydroxylate labelled proline has been investigated. 3. Sections of the partially decalcified bone and of the isolated cells have been examined by transmission electron microscopy. 4. The possible significance of the results and observations are discussed. We are deeply grateful to Dame Janet Vaughan, who very kindly read this manuscript and made several valuable suggestions and criticisms. We are much obliged to Dr Sylvia Fitton-Jackson for her advice on the techniques of tissue culture and for giving us the composition of her chemically defined medium. Dr Palfrey kindly allowed one of us, M. J. Dickens, to learn transmission electron microscopy in his department at St Thomas's Hospital Medical School under the expert tuition of Mr G. Maxwell. Mr R. Hockhan and Mr M. Hepburn of the University of Surrey Structural Studies Unit helpfully instructed in the operation of the transmission electron microscope. Our special thanks are due to Mr E. P. Morris for his competent and enthusiastic technical assistance.
Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results. A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur
Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and
Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. Methods. In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. Results. A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). Conclusion. Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid