Advertisement for orthosearch.org.uk
Results 1 - 20 of 276
Results per page:
Bone & Joint Open
Vol. 1, Issue 5 | Pages 103 - 114
13 May 2020
James HK Gregory RJH Tennent D Pattison GTR Fisher JD Griffin DR

Aims. The primary aim of the survey was to map the current provision of simulation training within UK and Republic of Ireland (RoI) trauma and orthopaedic (T&O) specialist training programmes to inform future design of a simulation based-curriculum. The secondary aims were to characterize; the types of simulation offered to trainees by stage of training, the sources of funding for simulation, the barriers to providing simulation in training, and to measure current research activity assessing the educational impact of simulation. Methods. The development of the survey was a collaborative effort between the authors and the British Orthopaedic Association Simulation Group. The survey items were embedded in the Performance and Opportunity Dashboard, which annually audits quality in training across several domains on behalf of the Speciality Advisory Committee (SAC). The survey was sent via email to the 30 training programme directors in March 2019. Data were retrieved and analyzed at the Warwick Clinical Trials Unit, UK. Results. Overall, 28 of 30 programme directors completed the survey (93%). 82% of programmes had access to high-fidelity simulation facilities such as cadaveric laboratories. More than half (54%) had access to a non-technical skills simulation training. Less than half (43%) received centralized funding for simulation, a third relied on local funding such as the departmental budget, and there was a heavy reliance on industry sponsorship to partly or wholly fund simulation training (64%). Provision was higher in the mid-stages (ST3-5) compared to late-stages (ST6-8) of training, and was formally timetabled in 68% of prostgrammes. There was no assessment of the impact of simulation training using objective behavioural measures or real-world clinical outcomes. Conclusion. There is currently widespread, but variable, provision of simulation in T&O training in the UK and RoI, which is likely to expand further with the new curriculum. It is important that research activity into the impact of simulation training continues, to develop an evidence base to support investment in facilities and provision


Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 559 - 565
1 May 2018
Bartlett JD Lawrence JE Stewart ME Nakano N Khanduja V

Aims. The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods. A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results’ titles, abstracts, and references were examined for relevance. Results. A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion. The demonstration of ‘real-world’ benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559–65


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during high flexion. The anatomy-mimetic design preserved normal knee kinematics in femoral rollback and internal rotation. Conclusion. The anatomy-mimetic design in lateral mobile UKA demonstrated restoration of normal knee kinematics. Such design may allow achievement of the long sought normal knee characteristics post-lateral mobile UKA. However, further in vivo and clinical studies are required to determine whether this design can truly achieve a more normal feeling of the knee and improved patient satisfaction. Cite this article: Bone Joint Res 2020;9(7):421–428


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1458 - 1463
1 Nov 2013
Won S Lee Y Ha Y Suh Y Koo K

Pre-operative planning for total hip replacement (THR) is challenging in hips with severe acetabular deformities, including those with a hypoplastic acetabulum or severe defects and in the presence of arthrodesis or ankylosis. We evaluated whether a Rapid Prototype (RP) model, which is a life-sized reproduction based on three-dimensional CT scans, can determine the feasibility of THR and provide information about the size and position of the acetabular component in severe acetabular deformities. THR was planned using an RP model in 21 complex hips in five men (five hips) and 16 women (16 hips) with a mean age of 47.7 years (24 to 70) at operation. An acetabular component was implanted successfully and THR completed in all hips. The acetabular component used was within 2 mm of the predicted size in 17 hips (80.9%). All of the acetabular components and femoral stems had radiological evidence of bone ingrowth and stability at the final follow-up, without any detectable wear or peri-prosthetic osteolysis. The RP model allowed a simulated procedure pre-operatively and was helpful in determining the feasibility of THR pre-operatively, and to decide on implant type, size and position in complex THRs.

Cite this article: Bone Joint J 2013;95-B:1458–63.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1406 - 1409
1 Oct 2013
Wähnert D Lange JH Schulze M Gehweiler D Kösters C Raschke MJ

The augmentation of fixation with bone cement is increasingly being used in the treatment of severe osteoporotic fractures. We investigated the influence of bone quality on the mechanics of augmentation of plate fixation in a distal femoral fracture model (AO 33 A3 type). Eight osteoporotic and eight non-osteoporotic femoral models were randomly assigned to either an augmented or a non-augmented group. Fixation was performed using a locking compression plate. In the augmented group additionally 1 ml of bone cement was injected into the screw hole before insertion of the screw. Biomechanical testing was performed in axial sinusoidal loading. Augmentation significantly reduced the cut-out distance in the osteoporotic models by about 67% (non-augmented mean 0.30 mm (sd 0.08) vs augmented 0.13 mm (sd 0.06); p = 0.017). There was no statistical reduction in this distance following augmentation in the non-osteoporotic models (non-augmented mean 0.15 mm (sd 0.02) vs augmented 0.15 mm (sd 0.07); p = 0.915). In the osteoporotic models, augmentation significantly increased stability (p = 0.017).

Cite this article: Bone Joint J 2013;95-B:1406–9.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 452 - 461
5 Sep 2024
Lee JY Lee HI Lee S Kim NH

Aims. The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Methods. Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress. Results. A total of 144 discs were categorized as ‘positive’ and 174 discs as ‘negative’ by the results of provocation discography. The presence of defined facet tropism (OR 3.451, 95% CI 1.944 to 6.126) and higher Adams classification (OR 2.172, 95% CI 1.523 to 3.097) were important predictive parameters for discography-‘positive’ discs. FEM simulations showcased uneven stress distribution and significant disc displacement in tropism-affected discs, where loading exacerbated stress on facets with greater angles. During varied positions, notably increased stress and displacement were observed in discs with tropism compared to those with normal facet structure. Conclusion. Our findings indicate that facet tropism can contribute to disc herniation and changes in intradiscal pressure, potentially exacerbating disc degeneration due to altered force distribution and increased mechanical stress. Cite this article: Bone Joint Res 2024;13(9):452–461


Aims. Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. Methods. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs. Results. Overall, 139 ankle fractures were fixed by 28 postgraduate year three to five trainee surgeons (mean age 29.4 years; 71% males) during ten months' follow-up. Under the intention-to-treat principle, a technically superior fixation was performed by the cadaveric-trained group compared to the standard-trained group, as measured on the first postoperative radiograph against predefined acceptability thresholds. The cadaveric-trained group used a lower intraoperative dose of radiation than the standard-trained group (mean difference 0.011 Gym. 2. , 95% confidence interval 0.003 to 0.019; p = 0.009). There was no difference in procedure time. Conclusion. Trainees randomized to cadaveric training performed better ankle fracture fixations and irradiated patients less during surgery compared to standard-trained trainees. This effect, which was previously unknown, is likely to be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):594–601


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture. Methods. This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty). Results. Eight female (29%) and 20 male trainees (71%), mean age 29.4 years, performed 317 DHS operations and 243 hemiarthroplasties during ten months of follow-up. Primary analysis was a random effect model with surgeon-level fixed effects of patient condition, patient age, and surgeon experience, with a random intercept for surgeon. Under the intention-to-treat principle, for hemiarthroplasty there was better implant position in favour of cadaveric training, measured by leg length discrepancy ≤ 10 mm (odds ratio (OR) 4.08 (95% confidence interval (CI) 1.17 to 14.22); p = 0.027). There were significantly fewer postoperative blood transfusions required in patients undergoing hemiarthroplasty by cadaveric-trained compared to standard-trained surgeons (OR 6.00 (95% CI 1.83 to 19.69); p = 0.003). For DHS, there was no significant between-group difference in implant position as measured by tip-apex distance ≤ 25 mm (OR 6.47 (95% CI 0.97 to 43.05); p = 0.053). No between-group differences were observed for any secondary clinical outcomes. Conclusion. Trainees randomized to additional cadaveric training performed hip fracture fixation with better implant positioning and fewer postoperative blood transfusions in hemiarthroplasty. This effect, which was previously unknown, may be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):602–611


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims. Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach. Methods. From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported. Results. The mean follow-up was 39.7 months (standard deviation (SD) 26.4). The mean age at surgery was 11.4 years (SD 1.6). No major complications were recorded. One patient required a total hip arthroplasty. Mean femoral head sphericity increased from 46.8% (SD 9.34%) to 70.2% (SD 15.44; p < 0.001); mean LCEA from 19.2° (SD 9.03°) to 44° (SD 10.27°; p < 0.001); mean extrusion index from 37.8 (SD 8.70) to 7.5 (SD 9.28; p < 0.001); and mean Tönnis angle from 16.5° (SD 12.35°) to 4.8° (SD 4.05°; p = 0.100). The mean VAS improved from 3.55 (SD 3.05) to 1.22 (1.72; p = 0.06); mean Merle d’Aubigné-Postel score from 14.55 (SD 1.74) to 16 (SD 1.6; p = 0.01); and mean mHHS from 60.6 (SD 18.06) to 81 (SD 6.63; p = 0.021). The EQ-5D-5L also showed significant improvements. Conclusion. FHRO associated with periacetabular procedures is a safe technique that showed improved functional, clinical, and morphological outcomes in Perthes’ disease. The newly introduced simulation and planning algorithm may help to further refine the technique. Cite this article: Bone Joint J 2024;106-B(5 Supple B):40–46


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Bone & Joint Open
Vol. 4, Issue 11 | Pages 859 - 864
13 Nov 2023
Chen H Chan VWK Yan CH Fu H Chan P Chiu K

Aims. The surgical helmet system (SHS) was developed to reduce the risk of periprosthetic joint infection (PJI), but the evidence is contradictory, with some studies suggesting an increased risk of PJI due to potential leakage through the glove-gown interface (GGI) caused by its positive pressure. We assumed that SHS and glove exchange had an impact on the leakage via GGI. Methods. There were 404 arthroplasty simulations with fluorescent gel, in which SHS was used (H+) or not (H-), and GGI was sealed (S+) or not (S-), divided into four groups: H+S+, H+S-, H-S+, and H-S-, varying by exposure duration (15 to 60 minutes) and frequency of glove exchanges (0 to 6 times). The intensity of fluorescent leakage through GGI was quantified automatically with an image analysis software. The effect of the above factors on fluorescent leakage via GGI were compared and analyzed. Results. The leakage intensity increased with exposure duration and frequency of glove exchanges in all groups. When SHS was used and GGI was not sealed (H+S-), the leakage intensity via GGI had the fastest increase, consistently higher than other groups (H+S+, H-S+ and H-S-) after 30 minutes (p < 0.05) and when there were more than four instances of glove exchange (p < 0.05). Additionally, the leakage was strongly correlated with the duration of exposure (r. s. = 0.8379; p < 0.050) and the frequency of glove exchange (r. s. = 0.8198; p < 0.050) in H+S-. The correlations with duration and frequency turned weak when SHS was not used (H-) or GGI was sealed off (S+). Conclusion. Due to personal protection, SHS is recommended in arthroplasties. Meanwhile, it is strongly recommended to seal the GGI of the inner gloves and exchange the outer gloves hourly to reduce the risk of contamination from SHS. Cite this article: Bone Jt Open 2023;4(11):859–864


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims. The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. Methods. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores. Results. Of the 58 patients (62 hips), two (two hips) presented with dislocation or reoperation, and Kaplan-Meier analysis indicated a five-year survival rate of 96.7% (95% CI 92.4 to 100). Mean stem anteversion was 35.2° (SD 18.2°) for the Taperloc stem and 29.8° (SD 7.9°) for the Wagner Cone stem; mean reduction from Taperloc to Wagner Cone was 5.4° (SD 18.8°). Overall, 55 hips (52 patients) were simulated, and the prevalence of prosthetic impingement was lower for the Wagner Cone (5.5%, 3/55) compared with the Taperloc (20.0%, 11/55) stem, with an odds ratio of 0.20 (p = 0.038). Among the 33 respondents to the postal survey (36 hips), the mean scores were VAS pain 10.9, VAS satisfaction 86.9, and OHS 44.7. A multivariable analysis revealed that reduction of stem anteversion from Taperloc to Wagner Cone was more favourable for VAS pain (p = 0.029) and VAS satisfaction (p = 0.002). Conclusion. The mid-term survival rate for THA using the Wagner Cone stem was high, which may be supported by a reduction in prosthetic impingement. The reduction in excessive stem anteversion by using a tapered cone stem was associated with reduced pain and increased patient satisfaction. Cite this article: Bone Jt Open 2024;5(10):858–867


Bone & Joint Research
Vol. 13, Issue 8 | Pages 392 - 400
5 Aug 2024
Barakat A Evans J Gibbons C Singh HP

Aims. The Oxford Shoulder Score (OSS) is a 12-item measure commonly used for the assessment of shoulder surgeries. This study explores whether computerized adaptive testing (CAT) provides a shortened, individually tailored questionnaire while maintaining test accuracy. Methods. A total of 16,238 preoperative OSS were available in the National Joint Registry (NJR) for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey dataset (April 2012 to April 2022). Prior to CAT, the foundational item response theory (IRT) assumptions of unidimensionality, monotonicity, and local independence were established. CAT compared sequential item selection with stopping criteria set at standard error (SE) < 0.32 and SE < 0.45 (equivalent to reliability coefficients of 0.90 and 0.80) to full-length patient-reported outcome measure (PROM) precision. Results. Confirmatory factor analysis (CFA) for unidimensionality exhibited satisfactory fit with root mean square standardized residual (RSMSR) of 0.06 (cut-off ≤ 0.08) but not with comparative fit index (CFI) of 0.85 or Tucker-Lewis index (TLI) of 0.82 (cut-off > 0.90). Monotonicity, measured by H value, yielded 0.482, signifying good monotonic trends. Local independence was generally met, with Yen’s Q3 statistic > 0.2 for most items. The median item count for completing the CAT simulation with a SE of 0.32 was 3 (IQR 3 to 12), while for a SE of 0.45 it was 2 (IQR 2 to 6). This constituted only 25% and 16%, respectively, when compared to the 12-item full-length questionnaire. Conclusion. Calibrating IRT for the OSS has resulted in the development of an efficient and shortened CAT while maintaining accuracy and reliability. Through the reduction of redundant items and implementation of a standardized measurement scale, our study highlights a promising approach to alleviate time burden and potentially enhance compliance with these widely used outcome measures. Cite this article: Bone Joint Res 2024;13(8):392–400


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32