Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked
Objectives. Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. Methods. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry. Results. There was no significant difference (p > 0.05) between the wear rate of implants challenged with CS-BVF (3.3 mm. 3. /MC (95% confidence interval (CI) 1.8 to 4.8)) and the wear rate of those not challenged (2.8 mm. 3. /MC (95% CI 1.3 to 4.3)). However, scratching the cobalt-chrome (CoCr) significantly (p < 0.001) increased the wear rate (20.6 mm. 3. /MC (95% CI 15.5 to 25.7)). The mean surface roughness of implants challenged with CS-BVF was equivalent to negative controls both after damage simulation (p = 0.98) and at the conclusion of the study (p = 0.28). Conclusion. When used close to articulating surfaces, a low-hardness, high-purity CS-BVF had no influence on wear. When trapped between the articulating surfaces of a total knee arthroplasty, CS-BVF did not scratch the surface of CoCr femoral components, nor did it increase the wear of
Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against
Aims
Methods
Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear. Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years.Aims
Methods
Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up. This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up.Aims
Methods
The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems. An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements.Aims
Methods
Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test.Aims
Methods
This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018.Aims
Methods
The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size.Aims
Methods
Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.Aims
Methods
A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.Aims
Methods
The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.Aims
Methods
Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes. A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications.Aims
Methods
This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.Aims
Methods
To report early (two-year) postoperative findings from a randomized controlled trial (RCT) investigating disease-specific quality of life (QOL), clinical, patient-reported, and radiological outcomes in patients undergoing a total shoulder arthroplasty (TSA) with a second-generation uncemented trabecular metal (TM) glenoid versus a cemented polyethylene glenoid (POLY) component. Five fellowship-trained surgeons from three centres participated. Patients aged between 18 and 79 years with a primary diagnosis of glenohumeral osteoarthritis were screened for eligibility. Patients were randomized intraoperatively to either a TM or POLY glenoid component. Study intervals were: baseline, six weeks, six-, 12-, and 24 months postoperatively. The primary outcome was the Western Ontario Osteoarthritis Shoulder QOL score. Radiological images were reviewed for metal debris. Mixed effects repeated measures analysis of variance for within and between group comparisons were performed.Aims
Methods
Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition.Aims
Methods
Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity.Aims
Methods
The most frequent indication for revision surgery in total hip arthroplasty (THA) is aseptic loosening. Aseptic loosening is associated with polyethylene liner wear, and wear may be reduced by using vitamin E-doped liners. The primary objective of this study was to compare proximal femoral head penetration into the liner between a) two cross-linked polyethylene (XLPE) liners (vitamin E-doped (vE-PE)) versus standard XLPE liners, and b) two modular femoral head diameters (32 mm and 36 mm). Patients scheduled for a THA were randomized to receive a vE-PE or XLPE liner with a 32 mm or 36 mm metal head (four intervention groups in a 2 × 2 factorial design). Head penetration and acetabular component migration were measured using radiostereometric analysis at baseline, three, 12, 24, and 60 months postoperatively. The Harris Hip Score, University of California, Los Angeles (UCLA) Activity Score, EuroQol five-dimension questionnaire (EQ-5D), and 36-Item Short-Form Health Survey questionnaire (SF-36) were assessed at baseline, three, 12, 36, and 60 months.Aims
Methods
Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.Aims
Methods
Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age. A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The BMD was assessed in Gruen and Charnley zones.Objectives
Patients and Methods